scispace - formally typeset
Search or ask a question

Showing papers by "A. Gil de Paz published in 2012"


Journal ArticleDOI
Sebastián F. Sánchez1, Robert C. Kennicutt2, A. Gil de Paz3, G. van de Ven4, José M. Vílchez1, Lutz Wisotzki5, C. J. Walcher5, D. Mast1, J. A. L. Aguerri6, J. A. L. Aguerri1, Sergio Albiol-Pérez7, Almudena Alonso-Herrero1, João Alves8, J. Bakos1, J. Bakos6, T. Bartakova9, Joss Bland-Hawthorn10, Alessandro Boselli11, D. J. Bomans12, África Castillo-Morales3, C. Cortijo-Ferrero1, A. de Lorenzo-Cáceres6, A. de Lorenzo-Cáceres1, A. del Olmo1, Ralf-Jürgen Dettmar12, Angeles I. Díaz13, Simon Ellis14, Simon Ellis10, Jesús Falcón-Barroso6, Jesús Falcón-Barroso1, Hector Flores15, Anna Gallazzi16, Begoña García-Lorenzo1, Begoña García-Lorenzo6, R. M. González Delgado1, Nicolas Gruel, Tim Haines17, C. Hao18, Bernd Husemann5, J. Iglesias-Páramo1, Knud Jahnke4, Benjamin D. Johnson19, Bruno Jungwiert20, Bruno Jungwiert21, Veselina Kalinova4, C. Kehrig5, D. Kupko5, Angel R. Lopez-Sanchez14, Angel R. Lopez-Sanchez22, Mariya Lyubenova4, R. A. Marino1, R. A. Marino3, E. Mármol-Queraltó1, E. Mármol-Queraltó3, I. Márquez1, J. Masegosa1, Sharon E. Meidt4, Jairo Méndez-Abreu1, Jairo Méndez-Abreu6, Ana Monreal-Ibero1, C. Montijo1, A. Mourao23, G. Palacios-Navarro7, Polychronis Papaderos24, Anna Pasquali25, Reynier Peletier, Enrique Pérez1, I. Pérez26, Andreas Quirrenbach, M. Relaño26, F. F. Rosales-Ortega1, F. F. Rosales-Ortega13, Martin Roth5, T. Ruiz-Lara26, Patricia Sanchez-Blazquez13, C. Sengupta1, R. Singh4, Vallery Stanishev23, Scott Trager27, Alexandre Vazdekis6, Alexandre Vazdekis1, Kerttu Viironen1, Vivienne Wild28, Stefano Zibetti16, Bodo L. Ziegler8 
TL;DR: The Calar Alto Legacy Integral Field Area (CALIFA) survey as discussed by the authors was designed to provide a first step in this direction by obtaining spatially resolved spectroscopic information of a diameter selected sample of similar to 600 galaxies in the Local Universe.
Abstract: The final product of galaxy evolution through cosmic time is the population of galaxies in the local universe. These galaxies are also those that can be studied in most detail, thus providing a stringent benchmark for our understanding of galaxy evolution. Through the huge success of spectroscopic single-fiber, statistical surveys of the Local Universe in the last decade, it has become clear, however, that an authoritative observational description of galaxies will involve measuring their spatially resolved properties over their full optical extent for a statistically significant sample. We present here the Calar Alto Legacy Integral Field Area (CALIFA) survey, which has been designed to provide a first step in this direction. We summarize the survey goals and design, including sample selection and observational strategy. We also showcase the data taken during the first observing runs (June/July 2010) and outline the reduction pipeline, quality control schemes and general characteristics of the reduced data. This survey is obtaining spatially resolved spectroscopic information of a diameter selected sample of similar to 600 galaxies in the Local Universe (0.005 < z < 0.03). CALIFA has been designed to allow the building of two-dimensional maps of the following quantities: (a) stellar populations: ages and metallicities; (b) ionized gas: distribution, excitation mechanism and chemical abundances; and (c) kinematic properties: both from stellar and ionized gas components. CALIFA uses the PPAK integral field unit (IFU), with a hexagonal field-of-view of similar to 1.3 square', with a 100% covering factor by adopting a three-pointing dithering scheme. The optical wavelength range is covered from 3700 to 7000 angstrom, using two overlapping setups (V500 and V1200), with different resolutions: R similar to 850 and R similar to 1650, respectively. CALIFA is a legacy survey, intended for the community. The reduced data will be released, once the quality has been guaranteed. The analyzed data fulfill the expectations of the original observing proposal, on the basis of a set of quality checks and exploratory analysis: (i) the final datacubes reach a 3 sigma limiting surface brightness depth of similar to 23.0 mag/arcsec(2) for the V500 grating data (similar to 22.8 mag/arcsec(2) for V1200); (ii) about similar to 70% of the covered field-of-view is above this 3 sigma limit; (iii) the data have a blue-to-red relative flux calibration within a few percent in most of the wavelength range; (iv) the absolute flux calibration is accurate within similar to 8% with respect to SDSS; (v) the measured spectral resolution is similar to 85 km s(-1) for V1200 (similar to 150 km s(-1) for V500); (vi) the estimated accuracy of the wavelength calibration is similar to 5 km s(-1) for the V1200 data (similar to 10 km s(-1) for the V500 data); (vii) the aperture matched CALIFA and SDSS spectra are qualitatively and quantitatively similar. Finally, we show that we are able to carry out all measurements indicated above, recovering the properties of the stellar populations, the ionized gas and the kinematics of both components. The associated maps illustrate the spatial variation of these parameters across the field, reemphasizing the redshift dependence of single aperture spectroscopic measurements. We conclude from this first look at the data that CALIFA will be an important resource for archaeological studies of galaxies in the Local Universe.

1,143 citations


Journal ArticleDOI
TL;DR: Sanchez et al. as discussed by the authors performed integral field spectroscopy of a sample of nearby galaxies to obtain properties of the H II regions of the galaxies and showed that the properties of these regions are similar to those of H. II.
Abstract: This is an electronic version of an article published in Astronomy and Astrophysics. Sanchez, S.F. et al. Integral field spectroscopy of a sample of nearby galaxies. II. Properties of the H II regions. Astronomy and Astrophysics 546 (2012): A2

173 citations


Journal ArticleDOI
TL;DR: In this paper, a detailed study of the spatial variation of the far-infrared (FIR) [C II]158 μm and [O I]63 μm lines and midinfrared H2 emission lines as tracers of gas cooling, and of the polycyclic aromatic hydrocarbon (PAH) bands as tracer of the photoelectric heating, using Herschel-PACS and Spitzer-IRS infrared spectral maps.
Abstract: NGC 1097 is a nearby Seyfert 1 galaxy with a bright circumnuclear starburst ring, a strong large-scale bar, and an active nucleus. We present a detailed study of the spatial variation of the far-infrared (FIR) [C II]158 μm and [O I]63 μm lines and mid-infrared H2 emission lines as tracers of gas cooling, and of the polycyclic aromatic hydrocarbon (PAH) bands as tracers of the photoelectric heating, using Herschel-PACS and Spitzer-IRS infrared spectral maps. We focus on the nucleus and the ring, and two star-forming regions (Enuc N and Enuc S). We estimated a photoelectric gas heating efficiency ([C II]158 μm+[O I]63 μm)/PAH in the ring about 50% lower than in Enuc N and S. The average 11.3/7.7 μm PAH ratio is also lower in the ring, which may suggest a larger fraction of ionized PAHs, but no clear correlation with [C II]158 μm/PAH(5.5-14 μm) is found. PAHs in the ring are responsible for a factor of two more [C II]158 μm and [O I]63 μm emission per unit mass than PAHs in the Enuc S. spectral energy distribution (SED) modeling indicates that at most 25% of the FIR power in the ring and Enuc S can come from high-intensity photodissociation regions (PDRs), in which case G_0 ~ 10^2.3 and n_H ~ 10^3.5 cm^–3 in the ring. For these values of G_0 and n_H, PDR models cannot reproduce the observed H_2 emission. Much of the H_2 emission in the starburst ring could come from warm regions in the diffuse interstellar medium that are heated by turbulent dissipation or shocks.

47 citations


Journal ArticleDOI
TL;DR: In this article, an analysis of the full bidimensional optical spectral cube of the nearby spiral galaxy NGC 5668, observed with the Pmas fiber PAcK Integral Field Unit (IFU) at the Calar Alto observatory 3.5 m telescope, is presented.
Abstract: We present an analysis of the full bidimensional optical spectral cube of the nearby spiral galaxy NGC 5668, observed with the Pmas fiber PAcK Integral Field Unit (IFU) at the Calar Alto observatory 3.5 m telescope. We make use of broadband imaging to provide further constraints on the evolutionary history of the galaxy. This data set will allow us to improve our understanding of the mechanisms that drive the evolution of disks. We investigated the properties of 62 H II regions and concentric rings in NGC 5668 and derived maps in ionized-gas attenuation and chemical (oxygen) abundances. We find that while inward of r similar to 36 '' similar to 4.4 kpc similar to 0.36 (D-25/2) the derived O/H ratio follows the radial gradient typical of spiral galaxies, the abundance gradient beyond r similar to 36 '' flattens out. The analysis of the multi-wavelength surface brightness profiles of NGC 5668 is performed by fitting these profiles with those predicted by chemo-spectrophotometric evolutionary models of galaxy disks. From this, we infer a spin and circular velocity of lambda = 0.053 and nu(c) = 167 km s(-1), respectively. The metallicity gradient and rotation curve predicted by this best-fitting galaxy model nicely match the values derived from the IFU observations, especially within r similar to 36 ''. The same is true for the colors despite some small offsets and a reddening in the bluest colors beyond that radius. On the other hand, deviations of some of these properties in the outer disk indicate that a secondary mechanism, possibly gas transfer induced by the presence of a young bar, must have played a role in shaping the recent chemical and star formation histories of NGC 5668.

42 citations


Proceedings ArticleDOI
TL;DR: The MEGARA instrument as mentioned in this paper is being built by a consortium of public research institutions led by the Universidad Complutense de Madrid (UCM, Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain), and UPM (Spain).
Abstract: In these proceedings we give a summary of the characteristics and current status of the MEGARA instrument, the future optical IFU and MOS for the 10.4-m Gran Telescopio Canarias (GTC). MEGARA is being built by a Consortium of public research institutions led by the Universidad Complutense de Madrid (UCM, Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain) and UPM (Spain). The MEGARA IFU includes two different fiber bundles, one called LCB (Large Compact Bundle) with a field-of-view of 12.5x11.3 arcsec(2) and a spaxel size of 0.62 arcsec yielding spectral resolutions between R=6,800-17,000 and another one called SCB (Small Compact Bundle) covering 8.5x6.7 arcsec(2) with hexagonally-shaped and packed 0.42-arcsec spaxels and resolutions R=8,000-20,000. The MOS component allows observing up to 100 targets in 3.5x3.5 arcmin(2). Both the IFU bundles and the set of 100 robotic positioners of the MOS will be placed at one of the GTC Folded-Cass foci while the spectrographs (one in the case of the MEGARA-Basic concept) will be placed at the Nasmyth platform. On March 2012 MEGARA passed the Preliminary Design Review and its first light is expected to take place at the end of 2015.

22 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the spectroscopic properties of a large number of H ii regions, located in 38 galaxies, using Integral Field Spectroscopy (IFS) with a similar setup.
Abstract: In this work we analyze the spectroscopic properties of a large number of H ii regions, \sim2600, located in 38 galaxies. The sample of galaxies has been assembled from the face-on spirals in the PINGS survey and a sample described in M\'armol-Queralt\'o (2011, henceforth Paper I). All the galaxies were observed using Integral Field Spectroscopy with a similar setup, covering their optical extension up to \sim2.4 effective radii within a wavelength range from \sim3700 to \sim6900{\AA}. We develop a new automatic procedure to detect H ii regions, based on the contrast of the H{\alpha} intensity maps. Once detected, the procedure provides us with the integrated spectra of each individual segmented region. A well-tested automatic decoupling procedure has been applied to remove the underlying stellar population, deriving the main proper- ties of the strongest emission lines in the considered wavelength range (covering from [O ii] {\lambda}3727 to [S ii] {\lambda}6731). A final catalogue of the spectroscopic properties of these regions has been created for each galaxy. In the current study we focused on the understanding of the average properties of the H ii regions and their radial distributions. We find that the gas-phase oxygen abundance and the H{\alpha} equivalent width present negative and positive gradient, respectively. The distribution of slopes is statistically compatible with a random Gaussian distribution around the mean value, if the radial distances are measured in units of the respective effective radius. No difference in the slope is found for galaxies of different morphologies: barred/non-barred, grand-design/flocculent. Therefore, the effective radius is a universal scale length for gradients in the evolution of galaxies. Other properties have a larger variance across each object.

12 citations


Journal ArticleDOI
TL;DR: In this paper, a detailed 2D study of the ionised gas in the local universe galaxy UGC 9837 was carried out and the authors derived an integrated spectrum of the galaxy and studied how varying spatial coverage affects the derived integrated properties.
Abstract: Context. We carry out a detailed 2-D study of the ionised gas in the local universe galaxy UGC 9837. In nearby galaxies, like the galaxy in question here, the spatial distribution of the physical properties can be studied in detail, providing benchmarks for galaxy formation models. Aims. Our aim is to derive detailed and spatially resolved physical properties of the ionised gas of UGC 9837. In addition, we derive an integrated spectrum of the galaxy and study how varying spatial coverage affects the derived integrated properties. We also study how the same properties would be seen if the galaxy was placed at a higher redshift and observed as part of one of the high-z surveys. Methods. UGC 9837 was observed using the PMAS PPAK integral-field unit. The spectra were reduced and calibrated and the stellar and ionised components separated. Using strong emission line ratios of the ionised gas, the source of ionisation, the dust extinction, the star formation rate, the electron density, and the oxygen abundance derived from a total integrated spectrum, central integrated spectrum, and individual fibre spectra are studied. Finally, the same properties are studied in a spectrum whose spatial resolution is degraded to simulate high-z observations. Results. The spatial distribution of the ionised gas properties is consistent with inside-out growing scenario of galaxies. We also find that lack of spatial coverage would bias the results derived from the integrated spectrum leading, e.g., to an underestimation of ionisation and overestimation of metallicity, if only the centre of the galaxy was covered by the spectrum. Our simulation of high-z observations shows that part of the spatial information, such as dust and SFR distribution would be lost, while shallower gradients in metallicity and ionisation strength would be detected.

12 citations


Proceedings ArticleDOI
TL;DR: MEGARA as discussed by the authors is the next optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) for Gran Telescopio Canarias.
Abstract: MEGARA is the next optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) for Gran Telescopio Canarias. The instrument offers two IFUs plus a Multi-Object Spectroscopy (MOS) mode: a large compact bundle covering 12.5 arcsec x 11.3 arcsec on sky with 100 μm fiber-core; a small compact bundle, of 8.5 arcsec x 6.7 arcsec with 70 μm fiber-core and a fiber MOS positioner that allows to place up to 100 mini-bundles, 7 fibers each, with 100 μm fiber-core, within a 3.5 arcmin x 3.5 arcmin field of view, around the two IFUs. The fibers, organized in bundles, end in the pseudo-slit plate, which will be placed at the entrance focal plane of the MEGARA spectrograph. The large IFU and MOS modes will provide intermediate to high spectral resolutions, R=6800-17000. The small IFU mode will provide R=8000-20000. All these resolutions are possible thanks to a spectrograph design based in the used of volume phase holographic gratings in combination with prisms to keep fixed the collimator and camera angle. The MEGARA optics is composed by a total of 53 large optical elements per spectrograph: the field lens, the collimator and the camera lenses plus the complete set of pupil elements including holograms, windows and prisms. INAOE, a partner of the GTC and a partner of MEGARA consortium, is responsible of the optics manufacturing and tests. INAOE will carry out this project working in an alliance with CIO. This paper summarizes the status of MEGARA spectrograph optics at the Preliminary Design Review, held on March 2012.

9 citations


Proceedings ArticleDOI
TL;DR: The MEGARA fiber unit as mentioned in this paper is the future optical Integral Field Unit (IFU) and Multi-Object Spectrograph (MOS) for GTC, which is placed at one folded Cassegrain focus and feeds the spectrograph located on a Nasmyth-type platform.
Abstract: MEGARA (Multi-Espectrografo en GTC de Alta Resolucion para Astronomia) is the future optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) for GTC. The Fiber Units are placed at one Folded Cassegrain focus and feed the spectrograph located on a Nasmyth-type platform. This paper summarizes the status of the design of the MEGARA Folded Cassegrain Subsystems after the PDR (held on March 2012), as well as the prototyping that has been carried out during this phase. The MEGARA Fiber Unit has two IFUs: a Large Compact Bundle covering 12.5 arcsec x 11.3 arcsec on sky (100 microns fiber-core), and a Small Compact Bundle, of 8.5 arcsec x 6.7 arcsec (70 microns fiber-core), plus a Fiber MOS positioner, able to place up to 100 mini-bundles 7 fibers each (100 microns fiber-core) in MOS configuration within a 3.5arcmin x 3.5arcmin FOV. A field lens provides a telecentric focal plane where the fibers are located. Microlens arrays couple the telescope beam to the collimator focal ratio at the entrance of the fibers (providing the f/17 to f/3 focal ratio reduction to enter into the fibers). Finally, the fibers, organized in bundles, end in the pseudo-slit plate, which will be placed at the entrance focal plane of the MEGARA spectrographs.

6 citations


Proceedings ArticleDOI
TL;DR: In this article, the authors describe the full preliminary design of the cryostat which will harbor the CCD detector for the MEGARA spectrograph, as well as all the vacuum and temperature sub-systems to operate it.
Abstract: MEGARA (Multi-Espectrografo en GTC de Alta Resolucion para Astronomia) is the new integral field unit (IFU) and multi-object spectrograph (MOS) instrument for the GTC. The spectrograph subsystems include the pseudo-slit, the shutter, the collimator with a focusing mechanism, pupil elements on a volume phase holographic grating (VPH) wheel and the camera joined to the cryostat through the last lens, with a CCD detector inside. In this paper we describe the full preliminary design of the cryostat which will harbor the CCD detector for the spectrograph. The selected cryogenic device is an LN2 open-cycle cryostat which has been designed by the "Astronomical Instrumentation Lab for Millimeter Wavelengths" at INAOE. A complete description of the cryostat main body and CCD head is presented as well as all the vacuum and temperature sub-systems to operate it. The CCD is surrounded by a radiation shield to improve its performance and is placed in a custom made mechanical mounting which will allow physical adjustments for alignment with the spectrograph camera. The 4k x 4k pixel CCD231 is our selection for the cryogenically cooled detector of MEGARA. The characteristics of this CCD, the internal cryostat cabling and CCD controller hardware are discussed. Finally, static structural finite element modeling and thermal analysis results are shown to validate the cryostat model.

4 citations


Proceedings ArticleDOI
TL;DR: The VIENTOS project tries to identify the current scientific needs, to understand why some of them have not been fulfilled yet and to propose optomechanical solutions for these pupil elements that could produce a qualitative leap in the performance of the instruments to operate in the large telescopes.
Abstract: The goal of VIENTOS project is to analyze pupil innovative systems that could be used in the new generation of instruments for the large telescopes. This study tries to identify the current scientific needs, to understand why some of them have not been fulfilled yet (due to pre-conceived technical ideas or to managerial reasons) and to propose opto-mechanical solutions for these pupil elements that could produce a qualitative leap in the performance of the instruments to operate in the large telescopes. VIENTOS is currently on-going as a collaborative project between FRACTAL and the University Complutense of Madrid (UCM) and is being partially funded by a CDTI grant under the program Industry for Science. CDTI is the Development and Industrial Transfer Center from the Minister of Science and Innovation (Spain). Among the different innovative systems that we have carried out, our team has explored potential solutions for narrow band Imaging with tunable filters in the near-IR and a novel pupil system called sliced-pupil grating, a device designed for increasing the spectral resolution in astronomical spectrographs, without changing the geometry of the main optics. Nanotechnology customized filters to be applicable to astronomical systems are under study.

Journal ArticleDOI
TL;DR: In this paper, a detailed study of the spatial variation of the far infrared (FIR) [CII]158um and [OI]63um lines and mid-infrared H2 emission lines as tracers of gas cooling, and of the polycyclic aromatic hydrocarbon (PAH) bands as tracer of the photoelectric heating, using Herschel-PACS, and Spitzer-IRS infrared spectral maps.
Abstract: NGC 1097 is a nearby Seyfert 1 galaxy with a bright circumnuclear starburst ring, a strong large-scale bar and an active nucleus. We present a detailed study of the spatial variation of the far infrared (FIR) [CII]158um and [OI]63um lines and mid-infrared H2 emission lines as tracers of gas cooling, and of the polycyclic aromatic hydrocarbon (PAH) bands as tracers of the photoelectric heating, using Herschel-PACS, and Spitzer-IRS infrared spectral maps. We focus on the nucleus and the ring, and two star forming regions (Enuc N and Enuc S). We estimated a photoelectric gas heating efficiency ([CII]158um+[OI]63um)/PAH in the ring about 50% lower than in Enuc N and S. The average 11.3/7.7um PAH ratio is also lower in the ring, which may suggest a larger fraction of ionized PAHs, but no clear correlation with [CII]158{\mu}m/PAH(5.5 - 14um) is found. PAHs in the ring are responsible for a factor of two more [CII]158um and [OI]63um emission per unit mass than PAHs in the Enuc S. SED modeling indicates that at most 25% of the FIR power in the ring and Enuc S can come from high intensity photodissociation regions (PDRs), in which case G0 ~ 10^2.3 and nH ~ 10^3.5 cm^-3 in the ring. For these values of G0 and nH PDR models cannot reproduce the observed H2 emission. Much of the the H2 emission in the starburst ring could come from warm regions in the diffuse ISM that are heated by turbulent dissipation or shocks.

Proceedings ArticleDOI
TL;DR: A CCD test-bench has been built at the Universidad Complutense´s LICA laboratory and is initially intended for commissioning of the MEGARA1 instrument but can be considered as a general purpose scientific CCDtest-bench.
Abstract: A CCD test-bench has been built at the Universidad Complutense's LICA laboratory. It is initially intended for commissioning of the MEGARA(1) (Multi-Espectrografo en GTC de Alta Resolucion para Astronomia) instrument but can be considered as a general purpose scientific CCD test-bench. The test-bench uses an incandescent broad-band light source in combination with a monochromator and two filter wheels to provide programmable narrow-band illumination across the visible band. Light from the monochromator can be directed to an integrating sphere for flat-field measurements or sent via a small aperture directly onto the CCD under test for high accuracy diode-mode quantum efficiency measurements. Point spread function measurements can also be performed by interposing additional optics between sphere and the CCD under test. The whole system is under LabView control via a clickable GUI. Automated measurement scans of quantum efficiency can be performed requiring only that the user replace the CCD under test with a calibrated photodiode after each measurement run. A 20cm diameter cryostat with a 10cm window and Brooks Polycold PCC closed-cycle cooler also form part of the test-bench. This cryostat is large enough to accommodate almost all scientific CCD formats has initially been used to house an E2V CCD230 in order to fully prove the test-bench functionality. This device is read-out using an Astronomical Research Camera controller connected to the UKATC's UCAM data acquisition system.