scispace - formally typeset
Search or ask a question

Showing papers by "Anna C. Need published in 2009"


Journal ArticleDOI
Hreinn Stefansson1, Hreinn Stefansson2, Roel A. Ophoff2, Roel A. Ophoff3, Roel A. Ophoff4, Stacy Steinberg2, Stacy Steinberg1, Ole A. Andreassen5, Sven Cichon6, Dan Rujescu7, Thomas Werge8, Olli Pietilainen9, Ole Mors10, Preben Bo Mortensen11, Engilbert Sigurdsson12, Omar Gustafsson1, Mette Nyegaard11, Annamari Tuulio-Henriksson13, Andres Ingason1, Thomas Hansen8, Jaana Suvisaari13, Jouko Lönnqvist13, Tiina Paunio, Anders D. Børglum11, Anders D. Børglum10, Annette M. Hartmann7, Anders Fink-Jensen8, Merete Nordentoft14, David M. Hougaard, Bent Nørgaard-Pedersen, Yvonne Böttcher1, Jes Olesen15, René Breuer16, Hans-Jürgen Möller7, Ina Giegling7, Henrik B. Rasmussen8, Sally Timm8, Manuel Mattheisen6, István Bitter17, János Réthelyi17, Brynja B. Magnusdottir12, Thordur Sigmundsson12, Pall I. Olason1, Gisli Masson1, Jeffrey R. Gulcher1, Magnús Haraldsson12, Ragnheidur Fossdal1, Thorgeir E. Thorgeirsson1, Unnur Thorsteinsdottir1, Unnur Thorsteinsdottir12, Mirella Ruggeri18, Sarah Tosato18, Barbara Franke19, Eric Strengman3, Lambertus A. Kiemeney19, Ingrid Melle5, Srdjan Djurovic5, Lilia I. Abramova20, Kaleda Vg20, Julio Sanjuán21, Rosa de Frutos21, Elvira Bramon22, Evangelos Vassos22, Gillian Fraser23, Ulrich Ettinger22, Marco Picchioni22, Nicholas Walker, T. Toulopoulou22, Anna C. Need24, Dongliang Ge24, Joeng Lim Yoon4, Kevin V. Shianna24, Nelson B. Freimer4, Rita M. Cantor4, Robin M. Murray22, Augustine Kong1, Vera Golimbet20, Angel Carracedo25, Celso Arango26, Javier Costas, Erik G. Jönsson27, Lars Terenius27, Ingrid Agartz27, Hannes Petursson12, Markus M. Nöthen6, Marcella Rietschel16, Paul M. Matthews28, Pierandrea Muglia29, Leena Peltonen9, David St Clair23, David Goldstein24, Kari Stefansson1, Kari Stefansson12, David A. Collier22, David A. Collier30 
06 Aug 2009-Nature
TL;DR: Findings implicating the MHC region are consistent with an immune component to schizophrenia risk, whereas the association with NRGN and TCF4 points to perturbation of pathways involved in brain development, memory and cognition.
Abstract: Schizophrenia is a complex disorder, caused by both genetic and environmental factors and their interactions. Research on pathogenesis has traditionally focused on neurotransmitter systems in the brain, particularly those involving dopamine. Schizophrenia has been considered a separate disease for over a century, but in the absence of clear biological markers, diagnosis has historically been based on signs and symptoms. A fundamental message emerging from genome-wide association studies of copy number variations (CNVs) associated with the disease is that its genetic basis does not necessarily conform to classical nosological disease boundaries. Certain CNVs confer not only high relative risk of schizophrenia but also of other psychiatric disorders. The structural variations associated with schizophrenia can involve several genes and the phenotypic syndromes, or the 'genomic disorders', have not yet been characterized. Single nucleotide polymorphism (SNP)-based genome-wide association studies with the potential to implicate individual genes in complex diseases may reveal underlying biological pathways. Here we combined SNP data from several large genome-wide scans and followed up the most significant association signals. We found significant association with several markers spanning the major histocompatibility complex (MHC) region on chromosome 6p21.3-22.1, a marker located upstream of the neurogranin gene (NRGN) on 11q24.2 and a marker in intron four of transcription factor 4 (TCF4) on 18q21.2. Our findings implicating the MHC region are consistent with an immune component to schizophrenia risk, whereas the association with NRGN and TCF4 points to perturbation of pathways involved in brain development, memory and cognition.

1,625 citations


Journal ArticleDOI
TL;DR: A genome-wide association study in a homogenous case-control cohort from Bergen, Norway and evaluated the top 100 single nucleotide polymorphisms (SNPs) in the family-based International COPD Genetics Network found two SNPs at the α-nicotinic acetylcholine receptor (CHRNA 3/5) locus showed unambiguous replication and were significantly associated with lung function in both the ICGN and Boston Early-Onset COPD populations.
Abstract: There is considerable variability in the susceptibility of smokers to develop chronic obstructive pulmonary disease (COPD). The only known genetic risk factor is severe deficiency of alpha(1)-antitrypsin, which is present in 1-2% of individuals with COPD. We conducted a genome-wide association study (GWAS) in a homogenous case-control cohort from Bergen, Norway (823 COPD cases and 810 smoking controls) and evaluated the top 100 single nucleotide polymorphisms (SNPs) in the family-based International COPD Genetics Network (ICGN; 1891 Caucasian individuals from 606 pedigrees) study. The polymorphisms that showed replication were further evaluated in 389 subjects from the US National Emphysema Treatment Trial (NETT) and 472 controls from the Normative Aging Study (NAS) and then in a fourth cohort of 949 individuals from 127 extended pedigrees from the Boston Early-Onset COPD population. Logistic regression models with adjustments of covariates were used to analyze the case-control populations. Family-based association analyses were conducted for a diagnosis of COPD and lung function in the family populations. Two SNPs at the alpha-nicotinic acetylcholine receptor (CHRNA 3/5) locus were identified in the genome-wide association study. They showed unambiguous replication in the ICGN family-based analysis and in the NETT case-control analysis with combined p-values of 1.48 x 10(-10), (rs8034191) and 5.74 x 10(-10) (rs1051730). Furthermore, these SNPs were significantly associated with lung function in both the ICGN and Boston Early-Onset COPD populations. The C allele of the rs8034191 SNP was estimated to have a population attributable risk for COPD of 12.2%. The association of hedgehog interacting protein (HHIP) locus on chromosome 4 was also consistently replicated, but did not reach genome-wide significance levels. Genome-wide significant association of the HHIP locus with lung function was identified in the Framingham Heart study (Wilk et al., companion article in this issue of PLoS Genetics; doi:10.1371/journal.pgen.1000429). The CHRNA 3/5 and the HHIP loci make a significant contribution to the risk of COPD. CHRNA3/5 is the same locus that has been implicated in the risk of lung cancer.

723 citations


Journal ArticleDOI
TL;DR: These data suggest that very few schizophrenia patients share identical genomic causation, potentially complicating efforts to personalize treatment regimens and support the emerging view that rare deleterious variants may be more important in schizophrenia predisposition than common polymorphisms.
Abstract: We report a genome-wide assessment of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) in schizophrenia. We investigated SNPs using 871 patients and 863 controls, following up the top hits in four independent cohorts comprising 1,460 patients and 12,995 controls, all of European origin. We found no genome-wide significant associations, nor could we provide support for any previously reported candidate gene or genome-wide associations. We went on to examine CNVs using a subset of 1,013 cases and 1,084 controls of European ancestry, and a further set of 60 cases and 64 controls of African ancestry. We found that eight cases and zero controls carried deletions greater than 2 Mb, of which two, at 8p22 and 16p13.11-p12.4, are newly reported here. A further evaluation of 1,378 controls identified no deletions greater than 2 Mb, suggesting a high prior probability of disease involvement when such deletions are observed in cases. We also provide further evidence for some smaller, previously reported, schizophrenia-associated CNVs, such as those in NRXN1 and APBA2. We could not provide strong support for the hypothesis that schizophrenia patients have a significantly greater “load” of large (>100 kb), rare CNVs, nor could we find common CNVs that associate with schizophrenia. Finally, we did not provide support for the suggestion that schizophrenia-associated CNVs may preferentially disrupt genes in neurodevelopmental pathways. Collectively, these analyses provide the first integrated study of SNPs and CNVs in schizophrenia and support the emerging view that rare deleterious variants may be more important in schizophrenia predisposition than common polymorphisms. While our analyses do not suggest that implicated CNVs impinge on particular key pathways, we do support the contribution of specific genomic regions in schizophrenia, presumably due to recurrent mutation. On balance, these data suggest that very few schizophrenia patients share identical genomic causation, potentially complicating efforts to personalize treatment regimens.

452 citations


Journal ArticleDOI
TL;DR: To avoid the genetics community contributing to healthcare disparities, it is important to adopt measures to ensure that populations of diverse ancestry are included in genomic studies, and that no major population groups are excluded.

301 citations


Journal ArticleDOI
TL;DR: The results suggest that common genetic variation does not strongly influence cognition in healthy subjects and that cognitive measures do not represent a more tractable genetic trait than clinical endpoints such as schizophrenia.
Abstract: Psychiatric disorders such as schizophrenia are commonly accompanied by cognitive impairments that are treatment resistant and crucial to functional outcome. There has been great interest in studying cognitive measures as endophenotypes for psychiatric disorders, with the hope that their genetic basis will be clearer. To investigate this, we performed a genome-wide association study involving 11 cognitive phenotypes from the Cambridge Neuropsychological Test Automated Battery. We showed these measures to be heritable by comparing the correlation in 100 monozygotic and 100 dizygotic twin pairs. The full battery was tested in ∼750 subjects, and for spatial and verbal recognition memory, we investigated a further 500 individuals to search for smaller genetic effects. We were unable to find any genome-wide significant associations with either SNPs or common copy number variants. Nor could we formally replicate any polymorphism that has been previously associated with cognition, although we found a weak signal of lower than expected P-values for variants in a set of 10 candidate genes. We additionally investigated SNPs in genomic loci that have been shown to harbor rare variants that associate with neuropsychiatric disorders, to see if they showed any suggestion of association when considered as a separate set. Only NRXN1 showed evidence of significant association with cognition. These results suggest that common genetic variation does not strongly influence cognition in healthy subjects and that cognitive measures do not represent a more tractable genetic trait than clinical endpoints such as schizophrenia. We discuss a possible role for rare variation in cognitive genomics.

140 citations


Journal ArticleDOI
TL;DR: The Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Phase 1 Schizophrenia trial compared the effectiveness of one typical and four atypical antipsychotic medications as mentioned in this paper.
Abstract: The Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Phase 1 Schizophrenia trial compared the effectiveness of one typical and four atypical antipsychotic medications. Although trials such as CATIE present important opportunities for pharmacogenetics research, the very richness of the clinical data presents challenges for statistical interpretation, and in particular the risk that data mining will lead to false-positive discoveries. For this reason, it is both misleading and unhelpful to perpetuate the current practice of reporting association results for these trials one gene at a time, ignoring the fact that multiple gene-by-phenotype tests are being carried out on the same data set. On the other hand, suggestive associations in such trials may lead to new hypotheses that can be tested through both replication efforts and biological experimentation. The appropriate handling of these forms of data therefore requires dissemination of association statistics without undue emphasis on select findings. Here we attempt to illustrate this approach by presenting association statistics for 2769 polymorphisms in 118 candidate genes evaluated for 21 pharmacogenetic phenotypes. On current evidence it is impossible to know which of these associations may be real, although in total they form a valuable resource that is immediately available to the scientific community.

97 citations


Journal ArticleDOI
TL;DR: It is shown that within Americans of European ancestry there is a perfect genetic corollary of Jewish ancestry which, in principle, would permit near perfect genetic inference of Ashkenazi Jewish ancestry.
Abstract: Background: It was recently shown that the genetic distinction between self-identified Ashkenazi Jewish and non-Jewish individuals is a prominent component of genome-wide patterns of genetic variation in European Americans. No study however has yet assessed how accurately self-identified (Ashkenazi) Jewish ancestry can be inferred from genomic information, nor whether the degree of Jewish ancestry can be inferred among individuals with fewer than four Jewish grandparents. Results: Using a principal components analysis, we found that the individuals with full Jewish ancestry formed a clearly distinct cluster from those individuals with no Jewish ancestry. Using the position on the first principal component axis, every single individual with self-reported full Jewish ancestry had a higher score than any individual with no Jewish ancestry. Conclusions: Here we show that within Americans of European ancestry there is a perfect genetic corollary of Jewish ancestry which, in principle, would permit near perfect genetic inference of Ashkenazi Jewish ancestry. In fact, even subjects with a single Jewish grandparent can be statistically distinguished from those without Jewish ancestry. We also found that subjects with Jewish ancestry were slightly more heterozygous than the subjects with no Jewish ancestry, suggesting that the genetic distinction between Jews and non-Jews may be more attributable to a Near-Eastern origin for Jewish populations than to population bottlenecks.

64 citations


Journal ArticleDOI
TL;DR: The authors declare the following competing interest: Pamela L. St. Jean, Pierandrea Muglia, and Clyde Francks are full-time employees of GlaxoSmithKline, a pharmaceutical company that has filed patent applications for SNPs related to schizophrenia.
Abstract: The authors declare the following competing interest, which should have been declared at the time of publication. Pamela L. St. Jean, Pierandrea Muglia, and Clyde Francks are full-time employees of GlaxoSmithKline, a pharmaceutical company that is developing treatments for schizophrenia and that has filed patent applications for SNPs related to schizophrenia (United States Patent Applications 20080176239 and 20080176240, and International Application No.: PCT/EP2008/050477).

18 citations


01 Jan 2009
TL;DR: The results suggest that although the COMT val108/158met genotype has no effect on cognitive behavioral measures in healthy individuals, it is associated with differences in neural process underlying cognitive output.
Abstract: The relationship between cognition and a functional polymorphism in the catechol-O-methlytransferase (COMT) gene, val108/158met, is one of debate in the literature. Furthermore, based on the dopaminergic differences associated with the COMT val108/158met genotype, neural differences during cognition may be present, regardless of genotypic differences in cognitive performance. To investigate these issues the current study aimed to 1) examine the effects of COMT genotype using a large sample of healthy individuals (n = 496-1218) and multiple cognitive measures, and using a subset of the sample (n = 22), 2) examine whether COMT genotype effects medial temporal lobe (MTL) and frontal activity during successful relational memory processing, and 3) investigate group differences in functional connectivity associated with successful relational memory processing. Results revealed no significant group difference in cognitive performance between COMT genotypes in any of the 19 cognitive measures. However, in the subset sample, COMT val homozygotes exhibited significantly decreased MTL and increased prefrontal activity during both successful relational encoding and retrieval, and reduced connectivity between these regions compared with met homozygotes. Taken together, the results suggest that although the COMT val108/158met genotype has no effect on cognitive behavioral measures in healthy individuals, it is associated with differences in neural process underlying cognitive output.

3 citations