scispace - formally typeset
Search or ask a question

Showing papers by "Dieter Neher published in 2017"


Journal ArticleDOI
TL;DR: In this paper, the authors expose a link between electron-vibrations coupling and non-radiative recombinations, derive a new limit for the efficiency of organic solar cells, and redefine their optimal optical gap.
Abstract: The conversion efficiency of organic solar cells suffers from their low open-circuit voltages. Here, the authors expose a link between electron-vibrations coupling and non-radiative recombinations, derive a new limit for the efficiency of organic solar cells, and redefine their optimal optical gap.

462 citations


Journal ArticleDOI
TL;DR: In this article, the authors studied charge extraction and recombination in efficient triple cation perovskite solar cells with undoped organic electron/hole transport layers (ETL/HTL), and identified the transit time through the HTL as the key figure of merit for maximizing the fill factor and efficiency.
Abstract: Perovskite solar cells now compete with their inorganic counterparts in terms of power conversion efficiency, not least because of their small open-circuit voltage (VOC) losses. A key to surpass traditional thin-film solar cells is the fill factor (FF). Therefore, more insights into the physical mechanisms that define the bias dependence of the photocurrent are urgently required. In this work, we studied charge extraction and recombination in efficient triple cation perovskite solar cells with undoped organic electron/hole transport layers (ETL/HTL). Using integral time of flight we identify the transit time through the HTL as the key figure of merit for maximizing the fill factor (FF) and efficiency. Complementarily, intensity dependent photocurrent and VOC measurements elucidate the role of the HTL on the bias dependence of non-radiative and transport-related loss channels. We show that charge transport losses can be completely avoided under certain conditions, yielding devices with FFs of up to 84%. Optimized cells exhibit power conversion efficiencies of above 20% for 6 mm2 sized pixels and 18.9% for a device area of 1 cm2. These are record efficiencies for hybrid perovskite devices with dopant-free transport layers, highlighting the potential of this device technology to avoid charge-transport limitations and to approach the Shockley–Queisser limit.

287 citations


Journal ArticleDOI
TL;DR: The results show that the reduction of nonradiative recombination due to charge-blocking at the perovskite/organic interface is more important than proper level alignment in the search for ideal selective contacts toward high VOC and efficiency.
Abstract: Perovskite solar cells with all-organic transport layers exhibit efficiencies rivaling their counterparts that employ inorganic transport layers, while avoiding high-temperature processing Herein, it is investigated how the choice of the fullerene derivative employed in the electron-transporting layer of inverted perovskite cells affects the open-circuit voltage (VOC ) It is shown that nonradiative recombination mediated by the electron-transporting layer is the limiting factor for the VOC in the cells By inserting an ultrathin layer of an insulating polymer between the active CH3 NH3 PbI3 perovskite and the fullerene, an external radiative efficiency of up to 03%, a VOC as high as 116 V, and a power conversion efficiency of 194% are realized The results show that the reduction of nonradiative recombination due to charge-blocking at the perovskite/organic interface is more important than proper level alignment in the search for ideal selective contacts toward high VOC and efficiency

204 citations


Journal ArticleDOI
TL;DR: The genuine effects of molecular orientation on charge generation and recombination are uncovered given a well-controlled donor/acceptor bilayer system and it is shown that the edge-on geometries improve charge generation at the cost of non-radiative recombination loss.
Abstract: A long standing question in organic electronics concerns the effects of molecular orientation at donor/acceptor heterojunctions. Given a well-controlled donor/acceptor bilayer system, we uncover the genuine effects of molecular orientation on charge generation and recombination. These effects are studied through the point of view of photovoltaics-however, the results have important implications on the operation of all optoelectronic devices with donor/acceptor interfaces, such as light emitting diodes and photodetectors. Our findings can be summarized by two points. First, devices with donor molecules face-on to the acceptor interface have a higher charge transfer state energy and less non-radiative recombination, resulting in larger open-circuit voltages and higher radiative efficiencies. Second, devices with donor molecules edge-on to the acceptor interface are more efficient at charge generation, attributed to smaller electronic coupling between the charge transfer states and the ground state, and lower activation energy for charge generation.Molecular orientation profoundly affects the performance of donor-acceptor heterojunctions, whilst it has remained challenging to investigate the detail. Using a controllable interface, Ran et al. show that the edge-on geometries improve charge generation at the cost of non-radiative recombination loss.

194 citations


Journal ArticleDOI
TL;DR: In this paper, thermal solid state reactions of traditional carbon nitride precursors (cyanamide, melamine) with NaCl, KCl, or CsCl are a cheap and straightforward way to prepare poly(heptazine imide) alkali metal salts, whose thermodynamic stability decreases upon the increase of the metal atom size.
Abstract: Cost-efficient, visible-light-driven hydrogen production from water is an attractive potential source of clean, sustainable fuel. Here, it is shown that thermal solid state reactions of traditional carbon nitride precursors (cyanamide, melamine) with NaCl, KCl, or CsCl are a cheap and straightforward way to prepare poly(heptazine imide) alkali metal salts, whose thermodynamic stability decreases upon the increase of the metal atom size. The chemical structure of the prepared salts is confirmed by the results of X-ray photoelectron and infrared spectroscopies, powder X-ray diffraction and electron microscopy studies, and, in the case of sodium poly(heptazine imide), additionally by atomic pair distribution function analysis and 2D powder X-ray diffraction pattern simulations. In contrast, reactions with LiCl yield thermodynamically stable poly(triazine imides). Owing to the metastability and high structural order, the obtained heptazine imide salts are found to be highly active photocatalysts in Rhodamine B and 4-chlorophenol degradation, and Pt-assisted sacrificial water reduction reactions under visible light irradiation. The measured hydrogen evolution rates are up to four times higher than those provided by a benchmark photocatalyst, mesoporous graphitic carbon nitride. Moreover, the products are able to photocatalytically reduce water with considerable reaction rates, even when glycerol is used as a sacrificial hole scavenger.

182 citations


Journal ArticleDOI
TL;DR: In this paper, it was shown that the more acidic precursors, such as commercially available 5-aminotetrazole, upon pyrolysis in LiCl/KCl salt melt yield Potassium poly(heptazine imide) (PHI) with the greatly improved structural order and thermodynamic stability.
Abstract: Potassium poly(heptazine imide) (PHI) is a photocatalytically active carbon nitride material that was recently prepared from substituted 1,2,4-triazoles Here we show that the more acidic precursors, such as commercially available 5-aminotetrazole, upon pyrolysis in LiCl/KCl salt melt yield PHI with the greatly improved structural order and thermodynamic stability Tetrazole-derived PHIs feature long range crystallinities and unconventionally small layer-stacking distances leading to the altered electronic band structures as shown by Mott-Schottky analyses Under the optimized synthesis conditions, visible light driven hydrogen evolution rates reach twice the rate provided by the previous golden standard, mesoporous graphitic carbon nitride having much higher surface area More interestingly, the up to 07 V higher valence band potential of crystalline PHI compared to the ordinary carbon nitrides makes it an efficient water oxidation photocatalyst which works even in the absence of any metal-based co-catalysts under visible light To our knowledge, this is the first case of a metal free oxygen liberation from water as such

138 citations


Journal ArticleDOI
TL;DR: In this paper, an optimization route is presented which increases the VOC by reducing the interfacial area between donor (D) and acceptor (A), which is attributed solely to the suppression of nonradiative recombination at the D-A interface.
Abstract: High photon energy losses limit the open-circuit voltage (VOC) and power conversion efficiency of organic solar cells (OSCs). In this work, an optimization route is presented which increases the VOC by reducing the interfacial area between donor (D) and acceptor (A). This optimization route concerns a cascade device architecture in which the introduction of discontinuous interlayers between alpha-sexithiophene (α-6T) (D) and chloroboron subnaphthalocyanine (SubNc) (A) increases the VOC of an α-6T/SubNc/SubPc fullerene-free cascade OSC from 0.98 V to 1.16 V. This increase of 0.18 V is attributed solely to the suppression of nonradiative recombination at the D–A interface. By accurately measuring the optical gap (Eopt) and the energy of the charge-transfer state (ECT) of the studied OSC, a detailed analysis of the overall voltage losses is performed. Eopt – qVOC losses of 0.58 eV, which are among the lowest observed for OSCs, are obtained. Most importantly, for the VOC-optimized devices, the low-energy (700 nm) external quantum efficiency (EQE) peak remains high at 79%, despite a minimal driving force for charge separation of less than 10 meV. This work shows that low-voltage losses can be combined with a high EQE in organic photovoltaic devices.

123 citations


Journal ArticleDOI
TL;DR: The herein demonstrated improvements of multilayer selective contacts may serve as a general design guideline for perovskite solar cells.
Abstract: Solar cells made from inorganic–organic perovskites have gradually approached market requirements as their efficiency and stability have improved tremendously in recent years. Planar low-temperature processed perovskite solar cells are advantageous for possible large-scale production but are more prone to exhibiting photocurrent hysteresis, especially in the regular n–i–p structure. Here, a systematic characterization of different electron selective contacts with a variety of chemical and electrical properties in planar n–i–p devices processed below 180 °C is presented. The inorganic metal oxides TiO2 and SnO2, the organic fullerene derivatives C60, PCBM, and ICMA, as well as double-layers with a metal oxide/PCBM structure are used as electron transport materials (ETMs). Perovskite layers deposited atop the different ETMs with the herein applied fabrication method show a similar morphology according to scanning electron microscopy. Further, surface photovoltage spectroscopy measurements indicate comparabl...

114 citations


Journal ArticleDOI
TL;DR: In this paper, a light management foil created by UV nano-print lithography on the glass side of an inverted (p-i-n) perovskite solar cell with 16.3% efficiency was applied.
Abstract: Inorganic–organic perovskites like methylammonium-lead-iodide have proven to be an effective class of materials for fabricating efficient solar cells. To improve their performance, light management techniques using textured surfaces, similar to those used in established solar cell technologies, should be considered. Here, we apply a light management foil created by UV nanoimprint lithography on the glass side of an inverted (p-i-n) perovskite solar cell with 16.3% efficiency. The obtained 1 mA cm–2 increase in the short-circuit current density translates to a relative improvement in cell performance of 5%, which results in a power conversion efficiency of 17.1%. Optical 3D simulations based on experimentally obtained parameters were used to support the experimental findings. A good match between the simulated and experimental data was obtained, validating the model. Optical simulations reveal that the main improvement in device performance is due to a reduction in total reflection and that relative improv...

95 citations


Journal ArticleDOI
TL;DR: It is shown that temperature-activated intramolecular vibrations of the ground state play a major role in determining the line shape of CT absorption bands in solid-state organic D-A blends and the importance of a reduced relaxation energy, which is introduced to characterize thermally activated CT processes.
Abstract: In disordered organic semiconductors, the transfer of a rather localized charge carrier from one site to another triggers a deformation of the molecular structure quantified by the intramolecular relaxation energy. A similar structural relaxation occurs upon population of intermolecular charge-transfer (CT) states formed at organic electron donor (D)–acceptor (A) interfaces. Weak CT absorption bands for D–A complexes occur at photon energies below the optical gaps of both the donors and the C60 acceptor as a result of optical transitions from the neutral ground state to the ionic CT state. In this work, we show that temperature-activated intramolecular vibrations of the ground state play a major role in determining the line shape of such CT absorption bands. This allows us to extract values for the relaxation energy related to the geometry change from neutral to ionic CT complexes. Experimental values for the relaxation energies of 20 D:C60 CT complexes correlate with values calculated within density func...

67 citations


Journal ArticleDOI
TL;DR: In this article, the Stille coupling synthesis of poly(DPP2OD-T) was reviewed and it was shown that high-quality, high molecular weight polymer chains are already obtained after as little as 15 min of reaction time.
Abstract: We review the Stille coupling synthesis of P(DPP2OD-T) (Poly[[2,5-di(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-3,6-diyl]-alt-[2,2′:5′,2″-terthiophene-5,5″-diyl]]) and show that high-quality, high molecular weight polymer chains are already obtained after as little as 15 min of reaction time. The results of UV–vis spectroscopy, grazing incidence wide-angle X-ray scattering (GIWAXS), and atomic force microscopy show that longer reaction times are unnecessary and do not produce any improvement in film quality. We achieve the best charge transport properties with polymer batches obtained from short reaction times and demonstrate that the catalyst washing step is responsible for the introduction of charge-trapping sites for both holes and electrons. These trap sites decrease the charge injection efficiency, strongly reducing the measured currents. The careful tuning of the synthesis allows us to reduce the reaction time by more than 100 times, achieving a more environmentally friendly, less costly ...

Book ChapterDOI
TL;DR: In this paper, the basic principles of photocurrent generation in bulk heterojunction organic solar cells, discuss the loss channels limiting their efficiency, and present case studies of several polymer-fullerene blends.
Abstract: In this chapter we review the basic principles of photocurrent generation in bulk heterojunction organic solar cells, discuss the loss channels limiting their efficiency, and present case studies of several polymer–fullerene blends. Using steady-state and transient, optical, and electrooptical techniques, we create a precise picture of the fundamental processes that ultimately govern solar cell efficiency.

Journal ArticleDOI
TL;DR: In this paper, the performance of three fluorinated conjugated polymers is compared with a 1:1 physical blend of the difluorinated and non-fluorinated polymers.
Abstract: Fluorinating conjugated polymers is a proven strategy for creating high performance materials in polymer solar cells, yet few studies have investigated the importance of the fluorination method. We compare the performance of three fluorinated systems: a poly(benzodithieno-dithienyltriazole) (PBnDT-XTAZ) random copolymer where 50% of the acceptor units are difluorinated, PBnDT-mFTAZ where every acceptor unit is monofluorinated, and a 1:1 physical blend of the difluorinated and nonfluorinated polymer. All systems have the same degree of fluorination (50%) yet via different methods (chemically vs physically, random vs regular). We show that these three systems have equivalent photovoltaic behavior: ∼5.2% efficiency with a short-circuit current (Jsc) at ∼11 mA cm–2, an open-circuit voltage (Voc) at 0.77 V, and a fill factor (FF) of ∼60%. Further investigation of these three systems demonstrates that the charge generation, charge extraction, and charge transfer state are essentially identical for the three stu...

Journal ArticleDOI
TL;DR: In this article, the authors solve the multipletrapping problem for recombining charge carriers and analyze it in the transient and steady excitation paradigm for different density of states (DOS) distributions.
Abstract: Charge carrier recombination in organic disordered semiconductors is strongly influenced by the thermalization of charge carriers in the density of states (DOS). Measurements of recombination dynamics, conducted under transient or steady-state conditions, can easily be misinterpreted when a detailed understanding of the interplay of thermalization and recombination is missing. To enable adequate measurement analysis, we solve the multipletrapping problem for recombining charge carriers and analyze it in the transient and steady excitation paradigm for different DOS distributions. We show that recombination rates measured after pulsed excitation are inherently time dependent since recombination gradually slows down as carriers relax in the DOS. When measuring the recombination order after pulsed excitation, this leads to an apparent high-order recombination at short times. As times goes on, the recombination order approaches an asymptotic value. For the Gaussian and the exponential DOS distributions, this asymptotic value equals the recombination order of the equilibrated system under steady excitation. For a more general DOS distribution, the recombination order can also depend on the carrier density, under both transient and steady-state conditions. We conclude that transient experiments can provide rich information about recombination in and out of equilibrium and the underlying DOS occupation provided that consistent modeling of the system is performed.

Journal ArticleDOI
TL;DR: A novel consideration of the role of the interfacial nanostructure and the nature of bound charges and their impact upon charge generation and recombination in organic photovoltaic devices and blend films is provided.
Abstract: In this contribution, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC70BM and ICTA) as models for intercalated and non-intercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the non-intercalated system, and almost vanishes when energetic disorder is included in the model. Despite these differences, both fs-resolved transient absorption spectroscopy (TAS) and TDCF exhibit extensive first-order losses in that system, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene aggregated domains (1:4 PBTTT:PC70BM), is the only one that shows slow, secon...

Journal ArticleDOI
Abstract: We present a closed analytical model to describe time dependent photocurrents upon pulsed illumination in the presence of an external RC circuit. In combination with numerical drift diffusion simulations, it is shown that the RC time has a severe influence on the shape of the transients. In particular, the maximum of the photocurrent is delayed due to a delayed recharging of the electrodes. This delay increases with the increasing RC constant. As a consequence, charge carrier mobilities determined from simple extrapolation of the initial photocurrent decay will be in general too small and feature a false dependence on the electric field. Here, we present a recipe to correct charge carrier mobilities determined from measured photocurrent transients by taking into account the RC time of the experimental set-up. We also demonstrate how the model can be used to more reliably determine the charge carrier mobility from experimental data of a typical polymer/fullerene organic solar cell. It is shown that further aspects like a finite rising time of the pulse generator and the current contribution of the slower charger carriers influence the shape of the transients and may lead to an additional underestimation of the transit time.

Journal ArticleDOI
TL;DR: In this article, the authors explored the physical mechanism behind the reduced performance of the ICBA-based device and found that the lower generation efficiency is neither caused by inefficient exciton splitting, nor the omnipresent PCBM electron acceptor.
Abstract: Alternative electron acceptors are being actively explored in order to advance the development of bulk-heterojunction (BHJ) organic solar cells (OSCs). The indene–C60 bisadduct (ICBA) has been regarded as a promising candidate, as it provides high open-circuit voltage in BHJ solar cells; however, the photovoltaic performance of such ICBA-based devices is often inferior when compared to cells with the omnipresent PCBM electron acceptor. Here, by pairing the high performance polymer (FTAZ) as the donor with either PCBM or ICBA as the acceptor, we explore the physical mechanism behind the reduced performance of the ICBA-based device. Time delayed collection field (TDCF) experiments reveal reduced, yet field-independent free charge generation in the FTAZ:ICBA system, explaining the overall lower photocurrent in its cells. Through the analysis of the photoluminescence, photogeneration, and electroluminescence, we find that the lower generation efficiency is neither caused by inefficient exciton splitting, nor ...

Journal ArticleDOI
TL;DR: Time-of-flight (ToF) measurements on bilayer samples consisting of the perovskite CGL and an organic semiconductor layer of different thickness are shown to be determined by the carrier motion through the organic material, consistent with the much higher charge carrier mobility in the pervskite.
Abstract: Hybrid lead halide perovskites are introduced as charge generation layers (CGLs) for the accurate determination of electron mobilities in thin organic semiconductors. Such hybrid perovskites have become a widely studied photovoltaic material in their own right, for their high efficiencies, ease of processing from solution, strong absorption, and efficient photogeneration of charge. Time-of-flight (ToF) measurements on bilayer samples consisting of the perovskite CGL and an organic semiconductor layer of different thickness are shown to be determined by the carrier motion through the organic material, consistent with the much higher charge carrier mobility in the perovskite. Together with the efficient photon-to-electron conversion in the perovskite, this high mobility imbalance enables electron-only mobility measurement on relatively thin application-relevant organic films, which would not be possible with traditional ToF measurements. This architecture enables electron-selective mobility measurements in ...

Book ChapterDOI
01 Jan 2017
TL;DR: In this article, the authors describe the synthesis, detailed characterisation, and application of a series of structurally modified copolymers to investigate fundamental structure-property relationships in this class of conjugated polymers.
Abstract: The recent development of donor–acceptor copolymers has led to an enormous improvement in the performance of organic solar cells and organic field-effect transistors. Here we describe the synthesis, detailed characterisation, and application of a series of structurally modified copolymers to investigate fundamental structure–property relationships in this class of conjugated polymers. The interplay between chemical structure and optoelectronic properties is investigated. These are further correlated to the charge transport and solar cell performance, which allows us to link their chemical structure to the observed physical properties.