scispace - formally typeset
F

Francesco Riccobono

Researcher at Paul Scherrer Institute

Publications -  28
Citations -  4497

Francesco Riccobono is an academic researcher from Paul Scherrer Institute. The author has contributed to research in topics: Nucleation & Particle. The author has an hindex of 18, co-authored 28 publications receiving 3764 citations.

Papers
More filters
Journal ArticleDOI

Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation

Jasper Kirkby, +68 more
- 25 Aug 2011 - 
TL;DR: First results from the CLOUD experiment at CERN are presented, finding that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100–1,000-fold and ion-induced binary nucleation of H2SO4–H2O can occur in the mid-troposphere but is negligible in the boundary layer.
Journal ArticleDOI

Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere

Joao Almeida, +85 more
- 17 Oct 2013 - 
TL;DR: The results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
Journal ArticleDOI

Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

TL;DR: In this article, the authors compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution, and concluded that the consistency of these reference instruments to the total particle number concentration was less than 5%.
Journal ArticleDOI

Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles.

TL;DR: It is shown, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere.
Journal ArticleDOI

Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

TL;DR: High-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions.