scispace - formally typeset
Open AccessJournal ArticleDOI

Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

Reads0
Chats0
TLDR
High-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions.
Abstract
Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiala boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions.

read more

Citations
More filters
Journal ArticleDOI

The role of low-volatility organic compounds in initial particle growth in the atmosphere

Jasmin Tröstl, +90 more
- 26 May 2016 - 
TL;DR: It is shown that organic vapours alone can drive nucleation, and a particle growth model is presented that quantitatively reproduces the measurements and implements a parameterization of the first steps of growth in a global aerosol model that can change substantially in response to concentrations of atmospheric cloud concentration nuclei.
Journal ArticleDOI

Ion-induced nucleation of pure biogenic particles

Jasper Kirkby, +95 more
- 26 May 2016 - 
TL;DR: Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.
Journal ArticleDOI

Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene.

TL;DR: This work addresses air contaminants and their multiphase chemical interactions at the atmosphere−biosphere interface, including human lungs and skin, plant leaves, cryptogamic covers, soil, and aquatic surfaces, and the chemical interactions of reactive oxygen species and reactive nitrogen species, as well as carbonaceous combustion aerosols.
Journal ArticleDOI

Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles.

TL;DR: It is shown, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere.
References
More filters
Journal ArticleDOI

Evolution of Organic Aerosols in the Atmosphere

Jose L. Jimenez, +66 more
- 11 Dec 2009 - 
TL;DR: A unifying model framework describing the atmospheric evolution of OA that is constrained by high–time-resolution measurements of its composition, volatility, and oxidation state is presented, which can serve as a basis for improving parameterizations in regional and global models.
Journal ArticleDOI

Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation

Jasper Kirkby, +68 more
- 25 Aug 2011 - 
TL;DR: First results from the CLOUD experiment at CERN are presented, finding that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100–1,000-fold and ion-induced binary nucleation of H2SO4–H2O can occur in the mid-troposphere but is negligible in the boundary layer.
Journal ArticleDOI

Scanning Electrical Mobility Spectrometer

TL;DR: In this article, the authors used a differential mobility classifier with a condensation nuclei counter as a detector to measure the electric field strength of a single particle in a time-varying electric field.
Related Papers (5)

Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere

Joao Almeida, +85 more
- 17 Oct 2013 - 

Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation

Jasper Kirkby, +68 more
- 25 Aug 2011 -