scispace - formally typeset
J

J. Schneps

Researcher at Argonne National Laboratory

Publications -  31
Citations -  2116

J. Schneps is an academic researcher from Argonne National Laboratory. The author has contributed to research in topics: Neutrino & MINOS. The author has an hindex of 15, co-authored 31 publications receiving 1979 citations.

Papers
More filters
Journal ArticleDOI

Improved search for muon-neutrino to electron-neutrino oscillations in MINOS

P. Adamson, +117 more
TL;DR: The results of a search for ν(e) appearance in a ν (μ) beam in the MINOS long-baseline neutrino experiment find that 2 sin(2) (θ(23))sin(2)(2θ (13))<0.12 at 90% confidence level for δ = 0 and the normal (inverted) neutrinos mass hierarchy.
Journal ArticleDOI

Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS

P. Adamson, +111 more
TL;DR: Measurements of oscillation parameters from ν (μ) and ν(μ) disappearance using beam and atmospheric data from MINOS are reported, with minimal change to the neutrino parameters.

Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) : 2: The Physics Program for DUNE at LBNF

R. Acciarri, +800 more
TL;DR: In this paper, the physics program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neurtrino Facility (LBNF) is described.
Posted Content

Fundamental Physics at the Intensity Frontier

J.L. Hewett, +466 more
TL;DR: The 2011 Workshop on Fundamental Physics at the Intensity Frontier as discussed by the authors identified and described opportunities at the intensity frontier in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms.
ReportDOI

The DUNE Far Detector Interim Design Report Volume 1:Physics, Technology and Strategies

B. Abi, +1092 more
TL;DR: The DUNE IDR as discussed by the authors describes the proposed physics program and technical designs of the DUNE Far Detector modules in preparation for the full TDR to be published in 2019, and it is intended as an intermediate milestone on the path to a complete TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project.