scispace - formally typeset
S

S. W. K. Emery

Researcher at University College London

Publications -  81
Citations -  9450

S. W. K. Emery is an academic researcher from University College London. The author has contributed to research in topics: Neutrino oscillation & Neutrino. The author has an hindex of 34, co-authored 81 publications receiving 8585 citations. Previous affiliations of S. W. K. Emery include French Alternative Energies and Atomic Energy Commission & DSM.

Papers
More filters
Journal ArticleDOI

Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam

K. Abe, +416 more
TL;DR: The T2K experiment observes indications of ν (μ) → ν(e) appearance in data accumulated with 1.43×10(20) protons on target, and under this hypothesis, the probability to observe six or more candidate events is 7×10(-3), equivalent to 2.5σ significance.
Journal ArticleDOI

The BABAR detector

Bernard Aubert, +819 more
TL;DR: BABAR as discussed by the authors is a detector for the SLAC PEP-II asymmetric e+e-B Factory operating at the upsilon 4S resonance, which allows comprehensive studies of CP-violation in B-meson decays.
Journal ArticleDOI

The T2K Experiment

K. Abe, +536 more
TL;DR: The T2K experiment as discussed by the authors is a long-baseline neutrino oscillation experiment whose main goal is to measure the last unknown lepton sector mixing angle by observing its appearance in a particle beam generated by the J-PARC accelerator.
Journal ArticleDOI

Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP

S. Schael, +1675 more
- 30 Nov 2013 - 
TL;DR: In this paper, the results of the four LEP experiments were combined to determine fundamental properties of the W boson and the electroweak theory, including the branching fraction of W and the trilinear gauge-boson self-couplings.
Journal ArticleDOI

Illuminating gravitational waves: A concordant picture of photons from a neutron star merger

Mansi M. Kasliwal, +94 more
- 22 Dec 2017 - 
TL;DR: It is demonstrated that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis, which is dissimilar to classical short gamma-ray bursts with ultrarelativistic jets.