scispace - formally typeset
Search or ask a question

Showing papers by "Leonora Balaj published in 2018"


Journal ArticleDOI
Clotilde Théry1, Kenneth W. Witwer2, Elena Aikawa3, María José Alcaraz4  +414 moreInstitutions (209)
TL;DR: The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities, and a checklist is provided with summaries of key points.
Abstract: The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.

5,988 citations


Journal ArticleDOI
TL;DR: Results suggest that PD-L1 on EVs may be another mechanism for glioblastoma to suppress antitumor immunity and support the potential of EVs as biomarkers in tumor patients.
Abstract: Binding of programmed death ligand-1 (PD-L1) to programmed cell death protein-1 (PD1) leads to cancer immune evasion via inhibition of T cell function. One of the defining characteristics of glioblastoma, a universally fatal brain cancer, is its profound local and systemic immunosuppression. Glioblastoma has also been shown to generate extracellular vesicles (EVs), which may play an important role in tumor progression. We thus hypothesized that glioblastoma EVs may be important mediators of immunosuppression and that PD-L1 could play a role. We show that glioblastoma EVs block T cell activation and proliferation in response to T cell receptor stimulation. PD-L1 was expressed on the surface of some, but not of all, glioblastoma-derived EVs, with the potential to directly bind to PD1. An anti-PD1 receptor blocking antibody significantly reversed the EV-mediated blockade of T cell activation but only when PD-L1 was present on EVs. When glioblastoma PD-L1 was up-regulated by IFN-γ, EVs also showed some PD-L1–dependent inhibition of T cell activation. PD-L1 expression correlated with the mesenchymal transcriptome profile and was anatomically localized in the perinecrotic and pseudopalisading niche of human glioblastoma specimens. PD-L1 DNA was present in circulating EVs from glioblastoma patients where it correlated with tumor volumes of up to 60 cm3. These results suggest that PD-L1 on EVs may be another mechanism for glioblastoma to suppress antitumor immunity and support the potential of EVs as biomarkers in tumor patients.

374 citations


Journal ArticleDOI
TL;DR: It is demonstrated that large EVs (L-EV) (large oncosomes) isolated from prostate cancer cells and patient plasma are an EV population that is enriched in chromosomal DNA, including large fragments up to 2 million base pair long, and Whole genome sequencing revealed that L-EV-derived DNA reflects the genomic make-up of the tumour of origin.
Abstract: Cancer-derived extracellular vesicles (EVs) are membrane-enclosed structures of highly variable size. EVs contain a myriad of substances (proteins, lipid, RNA, DNA) that provide a reservoir of circulating molecules, thus offering a good source of biomarkers. We demonstrate here that large EVs (L-EV) (large oncosomes) isolated from prostate cancer (PCa) cells and patient plasma are an EV population that is enriched in chromosomal DNA, including large fragments up to 2 million base pair long. While L-EVs and small EVs (S-EV) (exosomes) isolated from the same cells contained similar amounts of protein, the DNA was more abundant in L-EV, despite S-EVs being more numerous. Consistent with in vitro observations, the abundance of DNA in L-EV obtained from PCa patient plasma was variable but frequently high. Conversely, negligible amounts of DNA were present in the S-EVs from the same patients. Controlled experimental conditions, with spike-ins of L-EVs and S-EVs from cancer cells in human plasma from healthy subjects, showed that circulating DNA is almost exclusively enclosed in L-EVs. Whole genome sequencing revealed that the DNA in L-EVs reflects genetic aberrations of the cell of origin, including copy number variations of genes frequently altered in metastatic PCa (i.e. MYC, AKT1, PTK2, KLF10 and PTEN). These results demonstrate that L-EV-derived DNA reflects the genomic make-up of the tumour of origin. They also support the conclusion that L-EVs are the fraction of plasma EVs with DNA content that should be interrogated for tumour-derived genomic alterations.

244 citations


Journal ArticleDOI
04 Jan 2018-ACS Nano
TL;DR: A single EV analysis (SEA) technique which is simple, sensitive, multiplexable, and practical is described and the potential to address fundamental questions in vesicle biology and clinical applications is addressed.
Abstract: Extracellular vesicles (EV) are a family of cell-originating, membrane-enveloped nanoparticles with diverse biological function, diagnostic potential, and therapeutic applications. While EV can be abundant in circulation, their small size (∼4 order of magnitude smaller than cells) has necessitated bulk analyses, making many more nuanced biological explorations, cell of origin questions, or heterogeneity investigations impossible. Here we describe a single EV analysis (SEA) technique which is simple, sensitive, multiplexable, and practical. We profiled glioblastoma EV and discovered surprising variations in putative pan-EV as well as tumor cell markers on EV. These analyses shed light on the heterogeneous biomarker profiles of EV. The SEA technology has the potential to address fundamental questions in vesicle biology and clinical applications.

237 citations


Journal ArticleDOI
TL;DR: A sensitive analytical microfluidic platform for rapid and sensitive isolation of tumor-specific extracellular vesicles and identifies genes specific to GBM as well as transcripts that are hallmarks for the four genetic subtypes of the disease.
Abstract: Extracellular vesicles (EVs) carry RNA, DNA, proteins, and lipids. Specifically, tumor-derived EVs have the potential to be utilized as disease-specific biomarkers. However, a lack of methods to isolate tumor-specific EVs has limited their use in clinical settings. Here we report a sensitive analytical microfluidic platform (EVHB-Chip) that enables tumor-specific EV-RNA isolation within 3 h. Using the EVHB-Chip, we achieve 94% tumor-EV specificity, a limit of detection of 100 EVs per μL, and a 10-fold increase in tumor RNA enrichment in comparison to other methods. Our approach allows for the subsequent release of captured tumor EVs, enabling downstream characterization and functional studies. Processing serum and plasma samples from glioblastoma multiforme (GBM) patients, we can detect the mutant EGFRvIII mRNA. Moreover, using next-generation RNA sequencing, we identify genes specific to GBM as well as transcripts that are hallmarks for the four genetic subtypes of the disease.

224 citations


Journal ArticleDOI
TL;DR: The data suggest that α-syn species with presumably lost physiological functions or altered aggregation properties may shift the cellular processing towards vesicular secretion and lend further support to the tenet that EVs can mediate spreading of harmful α- Syn species and thereby contribute to the pathology in α- synucleinopathies.
Abstract: In Parkinson's disease and other Lewy body disorders, the propagation of pathology has been accredited to the spreading of extracellular α-synuclein (α-syn). Although the pathogenic mechanisms are not fully understood, cell-to-cell transfer of α-syn via exosomes and other extracellular vesicles (EVs) has been reported. Here, we investigated whether altered molecular properties of α-syn can influence the distribution and secretion of α-syn in human neuroblastoma cells. Different α-syn variants, including α-syn:hemi-Venus and disease-causing mutants, were overexpressed and EVs were isolated from the conditioned medium. Of the secreted α-syn, 0.1-2% was associated with vesicles. The major part of EV α-syn was attached to the outer membrane of vesicles, whereas a smaller fraction was found in their lumen. For α-syn expressed with N-terminal hemi-Venus, the relative levels associated with EVs were higher than for WT α-syn. Moreover, such EV-associated α-syn:hemi-Venus species were internalized in recipient cells to a higher degree than the corresponding free-floating forms. Among the disease-causing mutants, A53T α-syn displayed an increased association with EVs. Taken together, our data suggest that α-syn species with presumably lost physiological functions or altered aggregation properties may shift the cellular processing towards vesicular secretion. Our findings thus lend further support to the tenet that EVs can mediate spreading of harmful α-syn species and thereby contribute to the pathology in α-synucleinopathies.

67 citations


Book ChapterDOI
TL;DR: Recent work has made progress in the understanding of exRNAs-from their biogenesis, compartmentalization, and vesicle packaging to their various applications as biomarkers and therapeutics, as well as the new challenges that arise in isolation and purification for accurate and reproducible analysis.
Abstract: Extracellular RNA (exRNA) has recently expanded as a highly important area of study in biomarker discovery and cancer therapeutics. exRNA consists of diverse RNA subpopulations that are normally protected from degradation by incorporation into membranous vesicles or by lipid/protein association. They are found circulating in biofluids, and have proven highly promising for minimally invasive diagnostic and prognostic purposes, particularly in oncology. Recent work has made progress in our understanding of exRNAs-from their biogenesis, compartmentalization, and vesicle packaging to their various applications as biomarkers and therapeutics, as well as the new challenges that arise in isolation and purification for accurate and reproducible analysis. Here we review the most recent advancements in exRNA research.

55 citations


Journal ArticleDOI
TL;DR: It is shown that extracellular RNAs in human urine can be used as biomarkers to differentiate patients from unaffected controls, and to monitor exon skipping in patients with Duchenne muscular dystrophy taking the drug eteplirsen.
Abstract: Urine contains extracellular RNA (exRNA) markers of urogenital cancers However, the capacity of genetic material in urine to identify systemic diseases is unknown Here we describe exRNA splice products in human urine as a source of biomarkers for the two most common forms of muscular dystrophies, myotonic dystrophy (DM) and Duchenne muscular dystrophy (DMD) Using a training set, RT-PCR, droplet digital PCR, and principal component regression, we identify ten transcripts that are spliced differently in urine exRNA from patients with DM type 1 (DM1) as compared to unaffected or disease controls, form a composite biomarker, and develop a predictive model that is 100% accurate in our independent validation set Urine also contains mutation-specific DMD mRNAs that confirm exon-skipping activity of the antisense oligonucleotide drug eteplirsen Our results establish that urine mRNA splice variants can be used to monitor systemic diseases with minimal or no clinical effect on the urinary tract

36 citations


Book ChapterDOI
TL;DR: The protocols decision tree developed by the Extracellular RNA Communication Consortium is introduced and compared, and all methods currently available to the exRNA field are compared and pros and cons for each platform are reported.
Abstract: Understanding the role of extracellular RNA (exRNA) has emerged as an exciting avenue for biomarker, therapeutic, as well as basic cell-cell communication applications and discoveries. Multiple protocols, kits, and procedures have been developed in the last decade to allow fractionation as well as isolation of subpopulations of macromolecules of interest found in biofluids. Here, we introduce the protocols decision tree developed by the Extracellular RNA Communication Consortium and available on their website (exRNA portal), and compare all methods currently available to the exRNA field and report pros and cons for each platform.

10 citations


Book ChapterDOI
TL;DR: Protocols for commercially available kits that have been modified to yield consistent results for isolation of extracellular RNA from both whole serum/plasma andextracellular vesicle-enriched serum/Plasma samples are described.
Abstract: Extracellular RNAs are initiating increased interest due to their potentials in serving as novel biomarkers, mediators of intercellular communication, and therapeutic applications. As a newly emerging field, one of the main obstacles is the lack of standardized protocols for RNA isolations. Here we describe protocols for commercially available kits that have been modified to yield consistent results for isolation of extracellular RNA from both whole serum/plasma and extracellular vesicle-enriched serum/plasma samples.

9 citations


Patent
25 Jan 2018
TL;DR: In this article, methods for diagnosing and monitoring subjects with diseases associated with aberrant splicing, based upon detecting properly spliced isoform and mis-spliced isoforms in a urine sample from the subject, are described.
Abstract: Described herein are methods for diagnosing and monitoring subjects with diseases associated with aberrant splicing, based upon detecting properly spliced isoforms and mis-spliced isoforms in a urine sample from the subject.