scispace - formally typeset
N

Nikolaus Rajewsky

Researcher at Max Delbrück Center for Molecular Medicine

Publications -  190
Citations -  59153

Nikolaus Rajewsky is an academic researcher from Max Delbrück Center for Molecular Medicine. The author has contributed to research in topics: Gene & Regulation of gene expression. The author has an hindex of 76, co-authored 164 publications receiving 50045 citations. Previous affiliations of Nikolaus Rajewsky include New York University & Rockefeller University.

Papers
More filters
Journal ArticleDOI

Circular RNAs are a large class of animal RNAs with regulatory potency

TL;DR: It is found that a human circRNA, antisense to the cerebellar degeneration-related protein 1 transcript (CDR1as), is densely bound by microRNA (miRNA) effector complexes and harbours 63 conserved binding sites for the ancient miRNA miR-7.
Journal ArticleDOI

Combinatorial microRNA target predictions.

TL;DR: PicTar, a computational method for identifying common targets of micro RNAs, is presented and widespread coordinate control executed by microRNAs is suggested, thus providing evidence for coordinate microRNA control in mammals.
Journal ArticleDOI

Silencing of microRNAs in vivo with ‘antagomirs’

TL;DR: It is shown that a novel class of chemically engineered oligonucleotides, termed ‘antagomirs’, are efficient and specific silencers of endogenous miRNA levels in mice and may represent a therapeutic strategy for silencing miRNAs in disease.
Journal ArticleDOI

Widespread changes in protein synthesis induced by microRNAs

TL;DR: It is shown that a single miRNA can repress the production of hundreds of proteins, but that this repression is typically relatively mild, and the data suggest that a mi RNA can, by direct or indirect effects, tune protein synthesis from thousands of genes.
Journal ArticleDOI

miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades.

TL;DR: For example, miRDeep2 as mentioned in this paper identifies canonical and non-canonical miRNAs such as those derived from transposable elements and informs on high-confidence candidates that are detected in multiple independent samples.