scispace - formally typeset
Journal ArticleDOI

Combinatorial microRNA target predictions.

TLDR
PicTar, a computational method for identifying common targets of micro RNAs, is presented and widespread coordinate control executed by microRNAs is suggested, thus providing evidence for coordinate microRNA control in mammals.
Abstract
MicroRNAs are small noncoding RNAs that recognize and bind to partially complementary sites in the 3' untranslated regions of target genes in animals and, by unknown mechanisms, regulate protein production of the target transcript. Different combinations of microRNAs are expressed in different cell types and may coordinately regulate cell-specific target genes. Here, we present PicTar, a computational method for identifying common targets of microRNAs. Statistical tests using genome-wide alignments of eight vertebrate genomes, PicTar's ability to specifically recover published microRNA targets, and experimental validation of seven predicted targets suggest that PicTar has an excellent success rate in predicting targets for single microRNAs and for combinations of microRNAs. We find that vertebrate microRNAs target, on average, roughly 200 transcripts each. Furthermore, our results suggest widespread coordinate control executed by microRNAs. In particular, we experimentally validate common regulation of Mtpn by miR-375, miR-124 and let-7b and thus provide evidence for coordinate microRNA control in mammals.

read more

Citations
More filters
Journal ArticleDOI

MicroRNAs: Target Recognition and Regulatory Functions

TL;DR: The current understanding of miRNA target recognition in animals is outlined and the widespread impact of miRNAs on both the expression and evolution of protein-coding genes is discussed.
Journal ArticleDOI

Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells

TL;DR: It is shown that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location, and it is proposed that this RNA is called “exosomal shuttle RNA” (esRNA).
Journal ArticleDOI

Most mammalian mRNAs are conserved targets of microRNAs

TL;DR: This work overhauled its tool for finding preferential conservation of sequence motifs and applied it to the analysis of human 3'UTRs, increasing by nearly threefold the detected number of preferentially conserved miRNA target sites.
Journal Article

Oncomirs : microRNAs with a role in cancer

TL;DR: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators as discussed by the authors, and have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Journal ArticleDOI

Circular RNAs are a large class of animal RNAs with regulatory potency

TL;DR: It is found that a human circRNA, antisense to the cerebellar degeneration-related protein 1 transcript (CDR1as), is densely bound by microRNA (miRNA) effector complexes and harbours 63 conserved binding sites for the ancient miRNA miR-7.
References
More filters
Journal ArticleDOI

MicroRNAs: Genomics, Biogenesis, Mechanism, and Function

TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
Journal ArticleDOI

Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets

TL;DR: In a four-genome analysis of 3' UTRs, approximately 13,000 regulatory relationships were detected above the estimate of false-positive predictions, thereby implicating as miRNA targets more than 5300 human genes, which represented 30% of the gene set.
Journal ArticleDOI

The functions of animal microRNAs

TL;DR: Evidence is mounting that animal miRNAs are more numerous, and their regulatory impact more pervasive, than was previously suspected.
Journal ArticleDOI

Prediction of Mammalian MicroRNA Targets

TL;DR: The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.
Journal ArticleDOI

The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans

TL;DR: It is shown that let-7 is a heterochronic switch gene that encodes a temporally regulated 21-nucleotide RNA that is complementary to elements in the 3′ untranslated regions of the heteroch chronic genes lin-14, lin-28, Lin-41, lin -42 and daf-12, indicating that expression of these genes may be directly controlled by let- 7.
Related Papers (5)