scispace - formally typeset
Search or ask a question

Showing papers by "Raphael Guerois published in 2021"


Journal ArticleDOI
TL;DR: In this article, the authors used single-molecule techniques to characterize the dynamics of prokaryotic DNA repair by non-homologous end-joining (NHEJ), a system comprised only of the dimeric Ku and Ligase D (LigD).
Abstract: We use single-molecule techniques to characterize the dynamics of prokaryotic DNA repair by non-homologous end-joining (NHEJ), a system comprised only of the dimeric Ku and Ligase D (LigD). The Ku homodimer alone forms a ∼2 s synapsis between blunt DNA ends that is increased to ∼18 s upon addition of LigD, in a manner dependent on the C-terminal arms of Ku. The synapsis lifetime increases drastically for 4 nt complementary DNA overhangs, independently of the C-terminal arms of Ku. These observations are in contrast to human Ku, which is unable to bridge either of the two DNA substrates. We also demonstrate that bacterial Ku binds the DNA ends in a cooperative manner for synapsis initiation and remains stably bound at DNA junctions for several hours after ligation is completed, indicating that a system for removal of the proteins is active in vivo. Together these experiments shed light on the dynamics of bacterial NHEJ in DNA end recognition and processing. We speculate on the evolutionary similarities between bacterial and eukaryotic NHEJ and discuss how an increased understanding of bacterial NHEJ can open the door for future antibiotic therapies targeting this mechanism.

15 citations


Journal ArticleDOI
TL;DR: The authors showed that Pif1's activity that promotes meiotic DNA repair synthesis is restrained by the Mer3-MutLβ ensemble which in turn prevents long gene conversion tracts and possibly associated mutagenesis.
Abstract: Meiotic recombination ensures proper chromosome segregation to form viable gametes and results in gene conversions events between homologs Conversion tracts are shorter in meiosis than in mitotically dividing cells This results at least in part from the binding of a complex, containing the Mer3 helicase and the MutLβ heterodimer, to meiotic recombination intermediates The molecular actors inhibited by this complex are elusive The Pif1 DNA helicase is known to stimulate DNA polymerase delta (Pol δ) -mediated DNA synthesis from D-loops, allowing long synthesis required for break-induced replication We show that Pif1 is also recruited genome wide to meiotic DNA double-strand break (DSB) sites We further show that Pif1, through its interaction with PCNA, is required for the long gene conversions observed in the absence of MutLβ recruitment to recombination sites In vivo, Mer3 interacts with the PCNA clamp loader RFC, and in vitro, Mer3-MutLβ ensemble inhibits Pif1-stimulated D-loop extension by Pol δ and RFC-PCNA Mechanistically, our results suggest that Mer3-MutLβ may compete with Pif1 for binding to RFC-PCNA Taken together, our data show that Pif1's activity that promotes meiotic DNA repair synthesis is restrained by the Mer3-MutLβ ensemble which in turn prevents long gene conversion tracts and possibly associated mutagenesis

11 citations


Journal ArticleDOI
TL;DR: In this article, the authors characterized the crystal structure of Saccharomyces cerevisiae MutLγ(CTD) and showed that it preferentially binds Holliday junctions.
Abstract: In budding yeast, the MutL homolog heterodimer Mlh1-Mlh3 (MutLγ) plays a central role in the formation of meiotic crossovers. It is also involved in the repair of a subset of mismatches besides the main mismatch repair (MMR) endonuclease Mlh1-Pms1 (MutLα). The heterodimer interface and endonuclease sites of MutLγ and MutLα are located in their C-terminal domain (CTD). The molecular basis of MutLγ's dual roles in MMR and meiosis is not known. To better understand the specificity of MutLγ, we characterized the crystal structure of Saccharomyces cerevisiae MutLγ(CTD). Although MutLγ(CTD) presents overall similarities with MutLα(CTD), it harbors some rearrangement of the surface surrounding the active site, which indicates altered substrate preference. The last amino acids of Mlh1 participate in the Mlh3 endonuclease site as previously reported for Pms1. We characterized mlh1 alleles and showed a critical role of this Mlh1 extreme C terminus both in MMR and in meiotic recombination. We showed that the MutLγ(CTD) preferentially binds Holliday junctions, contrary to MutLα(CTD). We characterized Mlh3 positions on the N-terminal domain (NTD) and CTD that could contribute to the positioning of the NTD close to the CTD in the context of the full-length MutLγ. Finally, crystal packing revealed an assembly of MutLγ(CTD) molecules in filament structures. Mutation at the corresponding interfaces reduced crossover formation, suggesting that these superstructures may contribute to the oligomer formation proposed for MutLγ. This study defines clear divergent features between the MutL homologs and identifies, at the molecular level, their specialization toward MMR or meiotic recombination functions.

9 citations


Journal ArticleDOI
TL;DR: In this article, the authors identify specific amino acid residues in two adjacent FAN1 motifs that are critical for MLH1 binding and demonstrate that FAN 1-S126 phosphorylation is a determinant of ICL response and repeat stability.
Abstract: FAN1, a DNA structure-specific nuclease, interacts with MLH1, but the repair pathways in which this complex acts are unknown. FAN1 processes DNA interstrand crosslinks (ICLs) and FAN1 variants are modifiers of the neurodegenerative Huntington's disease (HD), presumably by regulating HD-causing CAG repeat expansions. Here, we identify specific amino acid residues in two adjacent FAN1 motifs that are critical for MLH1 binding. Disruption of the FAN1-MLH1 interaction confers cellular hypersensitivity to ICL damage and defective repair of CAG/CTG slip-outs, intermediates of repeat expansion mutations. FAN1-S126 phosphorylation, which hinders FAN1-MLH1 association, is cell cycle-regulated by cyclin-dependent kinase activity and attenuated upon ICL induction. Our data highlight the FAN1-MLH1 complex as a phosphorylation-regulated determinant of ICL response and repeat stability, opening novel paths to modify cancer and neurodegeneration.

9 citations


Journal ArticleDOI
TL;DR: In this article, the physical and functional interactions existing between MEIOB, SPATA22, and RPA were studied, and it was shown that MEIBO and SPATTA22 interact with the preformed RPA complex through their interacting domain and condense RPA-coated ssDNA in vitro.

8 citations


Journal ArticleDOI
TL;DR: In this paper, a foldamer/peptide hybrid inhibitor of histone chaperone ASF1, a key regulator of chromatin dynamics, was designed using oligoureas as α helix mimics.
Abstract: Sequence-specific oligomers with predictable folding patterns, i.e., foldamers, provide new opportunities to mimic α-helical peptides and design inhibitors of protein-protein interactions. One major hurdle of this strategy is to retain the correct orientation of key side chains involved in protein surface recognition. Here, we show that the structural plasticity of a foldamer backbone may notably contribute to the required spatial adjustment for optimal interaction with the protein surface. By using oligoureas as α helix mimics, we designed a foldamer/peptide hybrid inhibitor of histone chaperone ASF1, a key regulator of chromatin dynamics. The crystal structure of its complex with ASF1 reveals a notable plasticity of the urea backbone, which adapts to the ASF1 surface to maintain the same binding interface. One additional benefit of generating ASF1 ligands with nonpeptide oligourea segments is the resistance to proteolysis in human plasma, which was highly improved compared to the cognate α-helical peptide.

8 citations


Journal ArticleDOI
TL;DR: The InterEvDock3 as discussed by the authors protein docking server exploits the constraints of evolution by multiple means to generate structural models of protein assemblies, which leads to significantly higher free docking success rates.
Abstract: The InterEvDock3 protein docking server exploits the constraints of evolution by multiple means to generate structural models of protein assemblies. The server takes as input either several sequences or 3D structures of proteins known to interact. It returns a set of 10 consensus candidate complexes, together with interface predictions to guide further experimental validation interactively. Three key novelties were implemented in InterEvDock3 to help obtain more reliable models: users can (i) generate template-based structural models of assemblies using close and remote homologs of known 3D structure, detected through an automated search protocol, (ii) select the assembly models most consistent with contact maps from external methods that implement covariation-based contact prediction with or without deep learning and (iii) exploit a novel coevolution-based scoring scheme at atomic level, which leads to significantly higher free docking success rates. The performance of the server was validated on two large free docking benchmark databases, containing respectively 230 unbound targets (Weng dataset) and 812 models of unbound targets (PPI4DOCK dataset). Its effectiveness has also been proven on a number of challenging examples. The InterEvDock3 web interface is available at http://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock3/.

7 citations


Posted ContentDOI
TL;DR: Using ensemble and single-molecule biochemistry and structure modeling, it is demonstrated that different domains of Rfa1 regulate Dna2 recruitment, and its nuclease and helicase activities.
Abstract: The Dna2 helicase-nuclease functions in concert with the replication protein A (RPA) in DNA double-strand break repair. Using ensemble and single-molecule biochemistry, coupled with structure modeling, we demonstrate that the stimulation of S. cerevisiae Dna2 by RPA is not a simple consequence of Dna2 recruitment to single-stranded DNA. The large RPA subunit Rfa1 alone can promote the Dna2 nuclease activity, and we identified mutations in a helix embedded in the N-terminal domain of Rfa1 that specifically disrupt this capacity. The same RPA mutant is instead fully functional to recruit Dna2 and promote its helicase activity. Furthermore, we found residues located on the outside of the central DNA-binding OB-fold domain Rfa1-A, which are required to promote the Dna2 motor activity. Our experiments thus unexpectedly demonstrate that different domains of Rfa1 regulate Dna2 recruitment, and its nuclease and helicase activities. Consequently, the identified separation-of-function RPA variants are compromised to stimulate Dna2 in the processing of DNA breaks. The results explain phenotypes of replication-proficient but radiation-sensitive RPA mutants and illustrate the unprecedented functional interplay of RPA and Dna2.

7 citations


Posted ContentDOI
12 Aug 2021-bioRxiv
TL;DR: In this article, the contribution of each WAVE complex subunit to the metastasis-free survival of breast cancer patients was systematically analyzed and it was found that overexpression of the CYFIP2 subunit was surprisingly associated with good prognosis.
Abstract: Branched actin networks polymerized by the Arp2/3 complex are critical for cell migration. The WAVE complex is the major Arp2/3 activator at the leading edge of migrating cells. However, multiple distinct WAVE complexes can be assembled in a cell, due to the combinatorial complexity of paralogous subunits. When systematically analyzing the contribution of each WAVE complex subunit to the metastasis-free survival of breast cancer patients, we found that overexpression of the CYFIP2 subunit was surprisingly associated with good prognosis. Gain and loss of function experiments in transformed and untransformed mammary epithelial cells, as well as in prechordal plate cells in gastrulating zebrafish embryos, revealed that lamellipodium protrusion and cell migration were always inversely related to CYFIP2 levels. The role of CYFIP2 was systematically opposite to the role of the paralogous subunit CYFIP1 or of the NCKAP1 subunit, which determines levels of WAVE complexes. CYFIP2 showed no difference from CYFIP1 in assembling WAVE complexes or binding to active RAC1. CYFIP2-containing WAVE complexes, however, were less able to activate the Arp2/3 complex in response to RAC1 binding. CYFIP1- and CYFIP2-containing WAVE complexes thus compete for active RAC1 and produce different outcomes. Therefore, cell migration, lamellipodium protrusion and Arp2/3 activity are controlled by relative levels of CYFIP1 and CYFIP2.

6 citations


Journal ArticleDOI
TL;DR: Proteo3Dnet as discussed by the authors is a web server dedicated to the analysis of mass spectrometry interactomics experiments, which is used to organize protein data in terms of structural interactions.
Abstract: Proteo3Dnet is a web server dedicated to the analysis of mass spectrometry interactomics experiments. Given a flat list of proteins, its aim is to organize it in terms of structural interactions to provide a clearer overview of the data. This is achieved using three means: (i) the search for interologs with resolved structure available in the protein data bank, including cross-species remote homology search, (ii) the search for possibly weaker interactions mediated through Short Linear Motifs as predicted by ELM-a unique feature of Proteo3Dnet, (iii) the search for protein-protein interactions physically validated in the BioGRID database. The server then compiles this information and returns a graph of the identified interactions and details about the different searches. The graph can be interactively explored to understand the way the core complexes identified could interact. It can also suggest undetected partners to the experimentalists, or specific cases of conditionally exclusive binding. The interest of Proteo3Dnet, previously demonstrated for the difficult cases of the proteasome and pragmin complexes data is, here, illustrated in the context of yeast precursors to the small ribosomal subunits and the smaller interactome of 14-3-3zeta frequent interactors. The Proteo3Dnet web server is accessible at http://bioserv.rpbs.univ-paris-diderot.fr/services/Proteo3Dnet/.

6 citations


Journal ArticleDOI
TL;DR: In this paper, the silent information regulator (SIR) complex assembles heterochromatin-like chromatin at sub-telomeric chromosomal regions to prevent DNA double-strand break (DSB) resection, thus protecting damaged chromosome ends during homologous recombination (HR).
Abstract: Heterochromatin is a conserved feature of eukaryotic chromosomes, with central roles in gene expression regulation and maintenance of genome stability. How heterochromatin proteins regulate DNA repair remains poorly described. In the yeast Saccharomyces cerevisiae, the silent information regulator (SIR) complex assembles heterochromatin-like chromatin at sub-telomeric chromosomal regions. SIR-mediated repressive chromatin limits DNA double-strand break (DSB) resection, thus protecting damaged chromosome ends during homologous recombination (HR). As resection initiation represents the crossroads between repair by non-homologous end joining (NHEJ) or HR, we asked whether SIR-mediated heterochromatin regulates NHEJ. We show that SIRs promote NHEJ through two pathways, one depending on repressive chromatin assembly, and the other relying on Sir3 in a manner that is independent of its heterochromatin-promoting function. Via physical interaction with the Sae2 protein, Sir3 impairs Sae2-dependent functions of the MRX (Mre11-Rad50-Xrs2) complex, thereby limiting Mre11-mediated resection, delaying MRX removal from DSB ends, and promoting NHEJ.

Journal ArticleDOI
TL;DR: In this paper, a strategy to integrate atomic-level evolutionary information into different types of scoring functions to improve their docking discrimination is presented, and the best individual homology-enriched score reaches a top 10 success rate of 34.4%.
Abstract: MOTIVATION The crucial role of protein interactions and the difficulty in characterising them experimentally strongly motivates the development of computational approaches for structural prediction. Even when protein-protein docking samples correct models, current scoring functions struggle to discriminate them from incorrect decoys. The previous incorporation of conservation and coevolution information has shown promise for improving protein-protein scoring. Here, we present a novel strategy to integrate atomic-level evolutionary information into different types of scoring functions to improve their docking discrimination. RESULTS : We applied this general strategy to our residue-level statistical potential from InterEvScore and to two atomic-level scores, SOAP-PP and Rosetta interface score (ISC). Including evolutionary information from as few as ten homologous sequences improves the top 10 success rates of individual atomic-level scores SOAP-PP and Rosetta ISC by respectively 6 and 13.5 percentage points, on a large benchmark of 752 docking cases. The best individual homology-enriched score reaches a top 10 success rate of 34.4%. A consensus approach based on the complementarity between different homology-enriched scores further increases the top 10 success rate to 40%. AVAILABILITY All data used for benchmarking and scoring results, as well as a Singularity container of the pipeline, are available at http://biodev.cea.fr/interevol/interevdata/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

Journal ArticleDOI
11 Jun 2021-Cells
TL;DR: In this article, mutations in Rad52 N-terminal domain also suppress the DNA damage sensitivity of Srs2-deficient cells, and structural studies showed that these mutations affect the Rad52 oligomeric ring structure.
Abstract: Homologous recombination (HR) depends on the formation of a nucleoprotein filament of the recombinase Rad51 to scan the genome and invade the homologous sequence used as a template for DNA repair synthesis. Therefore, HR is highly accurate and crucial for genome stability. Rad51 filament formation is controlled by positive and negative factors. In Saccharomyces cerevisiae, the mediator protein Rad52 catalyzes Rad51 filament formation and stabilizes them, mostly by counteracting the disruptive activity of the translocase Srs2. Srs2 activity is essential to avoid the formation of toxic Rad51 filaments, as revealed by Srs2-deficient cells. We previously reported that Rad52 SUMOylation or mutations disrupting the Rad52-Rad51 interaction suppress Rad51 filament toxicity because they disengage Rad52 from Rad51 filaments and reduce their stability. Here, we found that mutations in Rad52 N-terminal domain also suppress the DNA damage sensitivity of Srs2-deficient cells. Structural studies showed that these mutations affect the Rad52 oligomeric ring structure. Overall, in vivo and in vitro analyzes of these mutants indicate that Rad52 ring structure is important for protecting Rad51 filaments from Srs2, but can increase Rad51 filament stability and toxicity in Srs2-deficient cells. This stabilization function is distinct from Rad52 mediator and annealing activities.

Posted ContentDOI
06 Aug 2021-bioRxiv
TL;DR: In this article, it was shown that ComF is not only involved in DNA transport through the cell membrane, but also required for handling the ssDNA once it is delivered into the cytoplasm.
Abstract: Natural transformation plays a major role in the spreading of antibiotic resistances and virulence factors. Whilst bacterial species display specificities in the molecular machineries allowing transforming DNA capture and integration into their genome, the ComF(C) protein is essential for natural transformation in all Gram- positive and - negative species studied. Despite this, its role remains largely unknown. Here, we show that Helicobacter pylori ComF is not only involved in DNA transport through the cell membrane, but it also required for the handling of the ssDNA once it is delivered into the cytoplasm. ComF crystal structure revealed the presence of a zinc-finger motif and a putative phosphoribosyl transferase domain, both necessary for its in vivo activity. ComF is a membrane-associated protein with affinity for single-stranded DNA. Collectively, our results suggest that ComF provides the link between the transport of the transforming DNA into the cytoplasm and its handling by the recombination machinery.

Posted ContentDOI
13 Aug 2021-bioRxiv
TL;DR: This article showed that Ecm11, a SC central element protein, localizes on both DSB sites and sites that attach chromatin loops to the chromosome axis, which are the starting points of SC formation, in a way that strictly requires the ZMM protein Zip4.
Abstract: Meiotic recombination is triggered by programmed double-strand breaks (DSBs), a subset of these being repaired as crossovers, promoted by eight evolutionarily conserved proteins, named ZMM. Crossover formation is functionally linked to synaptonemal complex (SC) assembly between homologous chromosomes, but the underlying mechanism is unknown. Here we show that Ecm11, a SC central element protein, localizes on both DSB sites and sites that attach chromatin loops to the chromosome axis, which are the starting points of SC formation, in a way that strictly requires the ZMM protein Zip4. Furthermore, Zip4 directly interacts with Ecm11 and point mutants that specifically abolish this interaction lose Ecm11 binding to chromosomes and exhibit defective SC assembly. This can be partially rescued by artificially tethering interaction-defective Ecm11 to Zip4. Mechanistically, this direct connection ensuring SC assembly from CO sites could be a way for the meiotic cell to shut down further DSB formation once enough recombination sites have been selected for crossovers, thereby preventing excess crossovers. Finally, the mammalian ortholog of Zip4, TEX11, also interacts with the SC central element TEX12, suggesting a general mechanism.


Posted ContentDOI
18 May 2021-bioRxiv
TL;DR: In this article, mutations in Rad52 Nterminal domain also suppress the DNA damage sensitivity of Srs2-deficient cells without disturbing Rad52 mediator and pairing activity, both in vivo and in vitro.
Abstract: Homologous recombination (HR) depends on the formation of a nucleoprotein filament of the recombinase Rad51 to scan the genome and invade the homologous sequence used as template for DNA repair synthesis. Therefore, HR is highly accurate and crucial for genome stability. Rad51 filament formation is controlled by positive and negative factors. In Saccharomyces cerevisiae, the mediator protein Rad52 catalyzes Rad51 filament formation and stabilizes them, mostly by counteracting the disruptive activity of the translocase Srs2. Srs2 activity is essential to avoid the formation of toxic Rad51 filaments, as revealed by Srs2-deficient cells. We previously reported that Rad52 SUMOylation or mutations disrupting the Rad52-Rad51 interaction suppress Rad51 filament toxicity because they disengage Rad52 from Rad51 filaments and reduce their stability. Here, we found that mutations in Rad52 N-terminal domain also suppress the DNA damage sensitivity of Srs2-deficient cells without disturbing Rad52 mediator and pairing activity, both in vivo and in vitro. Structural studies showed that these mutations affect the Rad52 oligomeric ring structure. Overall, our findings indicate that Rad52 ring structure is important for protecting Rad51 filaments from Srs2, but can increase Rad51 filament stability and toxicity in Srs2-deficient cells. This stabilization function is distinct from Rad52 mediator and annealing activities.

Posted ContentDOI
27 May 2021-bioRxiv
TL;DR: In this article, the Silent Information Regulator (SIR) complex assembles heterochromatin-like chromatin at subtelomeres, which limits double strand break (DSB) resection protecting damaged chromosome ends during HR.
Abstract: Heterochromatin is a conserved feature of eukaryotic chromosomes, with central roles in gene expression regulation and maintenance of genome stability. How DNA repair occurs in heterochromatin remains poorly described. In Saccharomyces cerevisiae, the Silent Information Regulator (SIR) complex assembles heterochromatin-like chromatin at subtelomeres. SIR-mediated repressive chromatin limits double strand break (DSB) resection protecting damaged chromosome ends during HR. As resection initiation marks the cross-road between repair by non-homologous end joining (NHEJ) or HR, we asked whether SIR-mediated heterochromatin regulates NHEJ. We show that SIRs promotes NHEJ through two pathways, one depending on repressive chromatin assembly, and the other relying on Sir3 in a manner that is independent of its heterochromatin-promoting function. Sir3 is a potent inhibitor of Sae2-dependent MRX functions. Sir3 physically interacts with Sae2 and this interaction impairs Sae2 interaction with MRX. As a consequence, Sir3 limits Mre11-mediated resection, delays MRX removal from DSB ends and promotes NHEJ.