scispace - formally typeset
Search or ask a question

Showing papers by "California Institute of Technology published in 1997"



Journal ArticleDOI
TL;DR: This work determines precise GPS satellite positions and clock corrections from a globally distributed network of GPS receivers, and analysis of data from hundreds to thousands of sites every day with 40-Mflop computers yields results comparable in quality to the simultaneous analysis of all data.
Abstract: Networks of dozens to hundreds of permanently operating precision Global Positioning System (GPS) receivers are emerging at spatial scales that range from 10(exp 0) to 10(exp 3) km. To keep the computational burden associated with the analysis of such data economically feasible, one approach is to first determine precise GPS satellite positions and clock corrections from a globally distributed network of GPS receivers. Their, data from the local network are analyzed by estimating receiver- specific parameters with receiver-specific data satellite parameters are held fixed at their values determined in the global solution. This "precise point positioning" allows analysis of data from hundreds to thousands of sites every (lay with 40-Mflop computers, with results comparable in quality to the simultaneous analysis of all data. The reference frames for the global and network solutions can be free of distortion imposed by erroneous fiducial constraints on any sites.

3,013 citations


Journal ArticleDOI
TL;DR: The Shannon capacity of a fading channel with channel side information at the transmitter and receiver, and at the receiver alone is obtained, analogous to water-pouring in frequency for time-invariant frequency-selective fading channels.
Abstract: We obtain the Shannon capacity of a fading channel with channel side information at the transmitter and receiver, and at the receiver alone. The optimal power adaptation in the former case is "water-pouring" in time, analogous to water-pouring in frequency for time-invariant frequency-selective fading channels. Inverting the channel results in a large capacity penalty in severe fading.

2,163 citations


Journal ArticleDOI
TL;DR: In this paper, a scheme to utilize photons for ideal quantum transmission between atoms located at spatially separated nodes of a quantum network was proposed, which employs special laser pulses that excite an atom inside an optical cavity at the sending node so that its state is mapped into a time-symmetric photon wave packet that will enter a cavity at receiving node and be absorbed by an atom there with unit probability.
Abstract: We propose a scheme to utilize photons for ideal quantum transmission between atoms located at spatially separated nodes of a quantum network. The transmission protocol employs special laser pulses that excite an atom inside an optical cavity at the sending node so that its state is mapped into a time-symmetric photon wave packet that will enter a cavity at the receiving node and be absorbed by an atom there with unit probability. Implementation of our scheme would enable reliable transfer or sharing of entanglement among spatially distant atoms.

1,992 citations


Journal ArticleDOI
TL;DR: In this paper, the authors provide a concise point of departure for researchers and practitioners alike wishing to assess the current state of the art in the control and monitoring of civil engineering structures, and provide a link between structural control and other fields of control theory.
Abstract: This tutorial/survey paper: (1) provides a concise point of departure for researchers and practitioners alike wishing to assess the current state of the art in the control and monitoring of civil engineering structures; and (2) provides a link between structural control and other fields of control theory, pointing out both differences and similarities, and points out where future research and application efforts are likely to prove fruitful. The paper consists of the following sections: section 1 is an introduction; section 2 deals with passive energy dissipation; section 3 deals with active control; section 4 deals with hybrid and semiactive control systems; section 5 discusses sensors for structural control; section 6 deals with smart material systems; section 7 deals with health monitoring and damage detection; and section 8 deals with research needs. An extensive list of references is provided in the references section.

1,883 citations


Journal ArticleDOI
TL;DR: This paper studies a multiscale finite element method for solving a class of elliptic problems arising from composite materials and flows in porous media, which contain many spatial scales and proposes an oversampling technique to remove the resonance effect.

1,825 citations


Journal ArticleDOI
TL;DR: In this paper, the authors derive hydrostatic, radiative equilibrium models for passive disks surrounding T Tauri stars, where each disk is encased by an optically thin layer of superheated dust grains.
Abstract: We derive hydrostatic, radiative equilibrium models for passive disks surrounding T Tauri stars. Each disk is encased by an optically thin layer of superheated dust grains. This layer reemits directly to space about half the stellar energy it absorbs. The other half is emitted inward and regulates the interior temperature of the disk. The heated disk flares. As a consequence, it absorbs more stellar radiation, especially at large radii, than a flat disk would. The portion of the spectral energy distribution contributed by the disk is fairly flat throughout the thermal infrared. At fixed frequency, the contribution from the surface layer exceeds that from the interior by about a factor 3 and is emitted at more than an order of magnitude greater radius. Spectral features from dust grains in the superheated layer appear in emission if the disk is viewed nearly face-on.

1,642 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide a plausible physical explanation for the occurrence of self-similarity in local-area network (LAN) traffic, based on convergence results for processes that exhibit high variability and is supported by detailed statistical analyzes of real-time traffic measurements from Ethernet LANs at the level of individual sources.
Abstract: A number of empirical studies of traffic measurements from a variety of working packet networks have demonstrated that actual network traffic is self-similar or long-range dependent in nature-in sharp contrast to commonly made traffic modeling assumptions. We provide a plausible physical explanation for the occurrence of self-similarity in local-area network (LAN) traffic. Our explanation is based on convergence results for processes that exhibit high variability and is supported by detailed statistical analyzes of real-time traffic measurements from Ethernet LANs at the level of individual sources. This paper is an extended version of Willinger et al. (1995). We develop here the mathematical results concerning the superposition of strictly alternating ON/OFF sources. Our key mathematical result states that the superposition of many ON/OFF sources (also known as packet-trains) with strictly alternating ON- and OFF-periods and whose ON-periods or OFF-periods exhibit the Noah effect produces aggregate network traffic that exhibits the Joseph effect. There is, moreover, a simple relation between the parameters describing the intensities of the Noah effect (high variability) and the Joseph effect (self-similarity). An extensive statistical analysis of high time-resolution Ethernet LAN traffic traces confirms that the data at the level of individual sources or source-destination pairs are consistent with the Noah effect. We also discuss implications of this simple physical explanation for the presence of self-similar traffic patterns in modern high-speed network traffic.

1,593 citations


Journal ArticleDOI
TL;DR: In this paper, an optical spectroscopic survey of the nuclear regions (r < 200 pc) of a large sample of nearby galaxies is presented, along with a compilation of the global properties of all 486 galaxies in the survey.
Abstract: We have completed an optical spectroscopic survey of the nuclear regions (r < 200 pc) of a large sample of nearby galaxies. Although the main objectives of the survey are to search for low-luminosity active galactic nuclei and to quantify their luminosity function, the database can be used for a variety of other purposes. This paper presents measurements of the spectroscopic parameters for the 418 emission-line nuclei, along with a compilation of the global properties of all 486 galaxies in the survey. Stellar absorption generally poses a serious obstacle to obtaining accurate measurement of emission lines in nearby galactic nuclei. We describe a procedure for removing the starlight from the observed spectra in an efficient and objective manner. The main parameters of the emission lines (intensity ratios, fluxes, profile widths, equivalent widths) are measured and tabulated, as are several stellar absorption-line and continuum indices useful for studying the stellar population. Using standard nebular diagnostics, we determine the probable ionization mechanisms of the emission-line objects. The resulting spectral classifications provide extensive information on the demographics of emission-line nuclei in the local universe. This new catalog contains over 200 objects showing spectroscopic evidence for recent star formation and an equally large number of active galactic nuclei, including 46 which show broad H-alpha emission. These samples will serve as the basis of future studies of nuclear activity in nearby galaxies.

1,416 citations


Journal ArticleDOI
TL;DR: A review of recent studies showing that the encoding of intentions to make movements is also among the cognitive functions of the posterior parietal cortex is reviewed.
Abstract: Recent experiments are reviewed that indicate that sensory signals from many modalities, as well as efference copy signals from motor structures, converge in the posterior parietal cortex in order to code the spatial locations of goals for movement. These signals are combined using a specific gain mechanism that enables the different coordinate frames of the various input signals to be combined into common, distributed spatial representations. These distributed representations can be used to convert the sensory locations of stimuli into the appropriate motor coordinates required for making directed movements. Within these spatial representations of the posterior parietal cortex are neural activities related to higher cognitive functions, including attention. We review recent studies showing that the encoding of intentions to make movements is also among the cognitive functions of this area.

1,394 citations


Journal ArticleDOI
TL;DR: A critical survey of existing works in cooperative robotics is given and open problems in this field are discussed, emphasizing the various theoretical issues that arise in the study of cooperative robotics.
Abstract: There has been increased research interest in systems composed of multiple autonomous mobile robots exhibiting cooperative behavior. Groups of mobile robots are constructed, with an aim to studying such issues as group architecture, resource conflict, origin of cooperation, learning, and geometric problems. As yet, few applications of cooperative robotics have been reported, and supporting theory is still in its formative stages. In this paper, we give a critical survey of existing works and discuss open problems in this field, emphasizing the various theoretical issues that arise in the study of cooperative robotics. We describe the intellectual heritages that have guided early research, as well as possible additions to the set of existing motivations.

Journal ArticleDOI
16 May 1997-Cell
TL;DR: It is provided evidence that CLV1 expression in the inflorescence is specifically associated with meristematic activity, suggesting a role in signal transduction.

Journal ArticleDOI
03 Oct 1997-Science
TL;DR: The first fully automated design and experimental validation of a novel sequence for an entire protein is described, and a BLAST search shows that the designed sequence, full sequence design 1 (FSD-1), has very low identity to any known protein sequence.
Abstract: The first fully automated design and experimental validation of a novel sequence for an entire protein is described. A computational design algorithm based on physical chemical potential functions and stereochemical constraints was used to screen a combinatorial library of 1.9 x 10^(27) possible amino acid sequences for compatibility with the design target, a ββα protein motif based on the polypeptide backbone structure of a zinc finger domain. A BLAST search shows that the designed sequence, full sequence design 1 (FSD-1), has very low identity to any known protein sequence. The solution structure of FSD-1 was solved by nuclear magnetic resonance spectroscopy and indicates that FSD-1 forms a compact well-ordered structure, which is in excellent agreement with the design target structure. This result demonstrates that computational methods can perform the immense combinatorial search required for protein design, and it suggests that an unbiased and quantitative algorithm can be used in various structural contexts.

Journal ArticleDOI
TL;DR: In this paper, the authors use data on daily observations of wages and hours for New York City cab drivers to estimate the supply response to transitory fluctuations in wages and find that wage elasticities are persistently negative.
Abstract: Life-cycle models of labor supply predict a positive relationship between hours supplied and transitory changes in wages because such changes have virtually no effect on life-cycle wealth. Previous attempts to test this hypothesis empirically with time-series data have not been supportive; estimated elasticities are typically negative or nonsignificant. Such analyses, however, are vulnerable to measurement error and other estimation problems. We use data on daily observations of wages and hours for New York City cab drivers to estimate the supply response to transitory fluctuations in wages. Cab drivers decide daily how many hours to supply, and face wages that are positively correlated within days, but largely uncorrelated between days. Using these data, our central finding is that wage elasticities are persistently negative–from -.5 to -1 in three different samples–even after correcting for measurement error using instrumental variables. These negative wage elasticities challenge the notion that cab drivers trade off labor and leisure at different points in time and question the empirical adequacy of life-cycle formulations of labor supply.

Journal ArticleDOI
13 Mar 1997-Nature
TL;DR: It is concluded that the posterior parietal cortex contains signals related to what the animal intends to do, and activity before the movement depended on the type of movement being planned.
Abstract: To look at or reach for what we see, spatial information from the visual system must be transformed into a motor plan. The posterior parietal cortex (PPC) is well placed to perform this function, because it lies between visual areas, which encode spatial information, and motor cortical areas. The PPC contains several subdivisions, which are generally conceived as high-order sensory areas. Neurons in area 7a and the lateral intraparietal area fire before and during visually guided saccades. Other neurons in areas 7a and 5 are active before and during visually guided arm movements. These areas are also active during memory tasks in which the animal remembers the location of a target for hundreds of milliseconds before making an eye or arm movement. Such activity could reflect either visual attention or the intention to make movements. This question is difficult to resolve, because even if the animal maintains fixation while directing attention to a peripheral location, the observed neuronal activity could reflect movements that are planned but not executed. To address this, we recorded from the PPC while monkeys planned either reaches or saccades to a single remembered location. We now report that, for most neurons, activity before the movement depended on the type of movement being planned. We conclude that PPC contains signals related to what the animal intends to do.

Journal ArticleDOI
07 Feb 1997-Cell
TL;DR: A minimalist definition is that stem cells have the capacity both to self-renew and to generate differentiated progeny, which immediately highlights some important problems.


Journal ArticleDOI
28 Aug 1997-Nature
TL;DR: The ability of nonlinear optical materials to transmit, process and store information forms the basis of emerging optoelectronic and photonic technologies as discussed by the authors, where organic chromophore-containing polymers, in which the refractive index can be controlled by light or an electric field, are expected to play an important role.
Abstract: The ability of nonlinear optical materials to transmit, process and store information forms the basis of emerging optoelectronic and photonic technologies. Organic chromophore-containing polymers, in which the refractive index can be controlled by light or an electric field, are expected to play an important role.

Journal ArticleDOI
TL;DR: C-met receptor is present beneath the basal lamina on presumptive satellite cells in intact muscle and that c-met mRNA and protein are expressed by all myofiber-associated satellite cells from the time of explant through the course of activation, proliferation, and differentiation.

Journal ArticleDOI
18 May 1997
TL;DR: Analyses of electronic-coupling strengths suggest that the efficiency of long-range ET depends on the protein secondary structure: beta sheets appear to mediate coupling more efficiently than alpha-helical structures, and hydrogen bonds play a critical role in both.
Abstract: Electron-transfer (ET) reactions are key steps in a diverse array of biological transformations ranging from photosynthesis to aerobic respiration. A powerful theoretical formalism has been developed that describes ET rates in terms of two parameters: the nuclear reorganization [lambda] energy (1) and the electronic-coupling strength (HAB). Studies of ET reactions in ruthenium-modified proteins have probed [lambda] and HAB in several metalloproteins (cytochrome c, myoglobin, azurin). This work has shown that protein reorganization energies are sensitive to the medium surrounding the redox sites and that an aqueous environment, in particular, leads to large reorganization energies. Analyses of electronic-coupling strengths suggest that the efficiency of long-range ET depends on the protein secondary structure: [beta]sheets appear to mediate coupling more efficiently than [alpha]-helical structures, and hydrogen bonds play a critical role in both.

Journal ArticleDOI
06 Nov 1997-Nature
TL;DR: Honeybees are used to demonstrate that odour encoding involves, as it does in locusts, the oscillatory synchronization of assemblies of projection neurons and that this synchronization is also selectively abolished by picrotoxin, an antagonist of the GABAA (γ-aminobutyric acid) receptor.
Abstract: Stimulus-evoked oscillatory synchronization of neural assemblies has been described in the olfactory and visual systems of several vertebrates and invertebrates In locusts, information about odour identity is contained in the timing of action potentials in an oscillatory population response, suggesting that oscillations may reflect a common reference for messages encoded in time Although the stimulus-evoked oscillatory phenomenon is reliable, its roles in sensation, perception, memory formation and pattern recognition remain to be demonstrated--a task requiring a behavioural paradigm Using honeybees, we now demonstrate that odour encoding involves, as it does in locusts, the oscillatory synchronization of assemblies of projection neurons and that this synchronization is also selectively abolished by picrotoxin, an antagonist of the GABA(A) (gamma-aminobutyric acid) receptor By using a behavioural learning paradigm, we show that picrotoxin-induced desynchronization impairs the discrimination of molecularly similar odorants, but not that of dissimilar odorants It appears, therefore, that oscillatory synchronization of neuronal assemblies is functionally relevant, and essential for fine sensory discrimination This suggests that oscillatory synchronization and the kind of temporal encoding it affords provide an additional dimension by which the brain could segment spatially overlapping stimulus representations

Proceedings Article
01 Dec 1997
TL;DR: An expectation-maximization (EM) algorithm for principal component analysis (PCA) which allows a few eigenvectors and eigenvalues to be extracted from large collections of high dimensional data and defines a proper density model in the data space.
Abstract: I present an expectation-maximization (EM) algorithm for principal component analysis (PCA). The algorithm allows a few eigenvectors and eigenvalues to be extracted from large collections of high dimensional data. It is computationally very efficient in space and time. It also naturally accommodates missing information. I also introduce a new variant of PCA called sensible principal component analysis (SPCA) which defines a proper density model in the data space. Learning for SPCA is also done with an EM algorithm. I report results on synthetic and real data showing that these EM algorithms correctly and efficiently find the leading eigenvectors of the covariance of datasets in a few iterations using up to hundreds of thousands of datapoints in thousands of dimensions.

Journal ArticleDOI
17 Oct 1997-Cell
TL;DR: It is shown that Cdc4p, Cdc53p, and Skp1p assemble into a ubiquitin ligase complex named SCFCdc4 p, which is sufficient to reconstitute ubiquitination of Cdk-phosphorylated Sic1p.

Journal ArticleDOI
TL;DR: In this article, a gas/particle absorption model was used to simulate the evolution of aerosol formation during photooxidation of α-pinene and other cyclic monoterpenes.
Abstract: Measurements of aerosol formation during thephotooxidation of α-pinene, β-pinene,d-3-carene, d-limonene, ocimene, linalool, terpinene-4-ol, andtrans-caryophyllene were conducted in an outdoor smog chamber. Daylight experiments in the presence of NO_x and dark experiments with elevated ozone concentrations were performed. The evolution of the aerosol was simulated by the application of a gas/particle absorption model in connection with a chemical reaction mechanism. The fractional aerosol yield is shown to be a function of the organic aerosol mass concentration and temperature. Ozone and, for selected hydrocarbons, the NO_3 reaction of the compounds were found to represent efficient routes to the formation of condensable products. For initial hydrocarbon mixing ratios of about 100 ppb, the fractional aerosol yields from daylight runs have been estimated to be ∼5% for open-chain hydrocarbons, such as ocimene and linalool, 5–25% for monounsaturated cyclic monoterpenes, such as α-pinene, d-3-carene, or terpinene-4-ol, and ∼40% for a cyclic monoterpene with two double bonds like d-limonene. For the only sesquiterpene investigated, trans-caryophyllene, a fractional aerosol yield of close to 100% was observed. The majority of the compounds studied showed an even higher aerosol yield during dark experiments in the presence of ozone.

Journal ArticleDOI
TL;DR: In this article, surface-brightness profiles of 61 elliptical galaxies and spiral bulges (hot galaxies) were analyzed using the Hubble Space Telescope surface brightness data and they showed that the centers of these galaxies are up to 1000 times denser in mass and luminosity than the cores of large galaxies at a limiting radius of 10 pc.
Abstract: We analyze Hubble Space Telescope surface-brightness profiles of 61 elliptical galaxies and spiral bulges (hot galaxies). Luminous hot galaxies have cuspy cores with steep outer power-law profiles that break at r ~ r_b to shallow inner profiles with logslope less than 0.3. Faint hot galaxies show steep, largely featureless power-law profiles at all radii and lack cores. The centers of power-law galaxies are up to 1000 times denser in mass and luminosity than the cores of large galaxies at a limiting radius of 10 pc. At intermediate magnitudes (-22.0 < M_V < -20.5), core and power-law galaxies coexist, and there is a range in r_b at a given luminosity of at least two orders of magnitude. Central properties correlate with global rotation and shape: core galaxies tend to be boxy and slowly rotating, whereas power-law galaxies tend to be disky and rapidly rotating. The dense power-law centers of disky, rotating galaxies are consistent with their formation in gas-rich mergers. The parallel proposition that cores are simply the by-products of gas-free stellar mergers is less compelling. For example, core galaxies accrete small, dense, gas-free galaxies at a rate sufficient to fill in low-density cores if the satellites survived and sank to the center. An alternative model for core formation involves the orbital decay of massive black holes (BHs): the BH may heat and eject stars from the center, eroding a power law if any exists and scouring out a core. An average BH mass per spheroid of 0.002 times the stellar mass yields reasonably good agreement with the masses and radii of observed cores and in addition is consistent with the energetics of AGNs and kinematic detections of BHs in nearby galaxies.

Journal ArticleDOI
06 Mar 1997-Nature
TL;DR: It is shown here that the CURLY LEAF gene of Arabidopsis is necessary for stable repression of a floral homeotic gene and encodes a protein with homology to the product of the Polycomb-group gene Enhancer of zeste.
Abstract: Cell fate is determined when the commitment of cells to a particular fate is autonomously maintained, irrespective of their environment. In Drosophila, fate determination is maintained through the action of the Polycomb-group and trithorax-group genes, which are required so that states of homeotic gene activity are inherited through cell division. It is shown here that the CURLY LEAF gene of Arabidopsis is necessary for stable repression of a floral homeotic gene and encodes a protein with homology to the product of the Polycomb-group gene Enhancer of zeste. We suggest that Polycomb-group genes have a similar role in fate determination in plants and animals.

Journal ArticleDOI
TL;DR: In this article, the authors discuss recent observations of accreting binary pulsars with the all-sky BATSE instrument on the Compton Gamma Ray Observatory, which has detected and studied nearly half of the known pulsar systems, as well as new insights into long-term accretion torque histories.
Abstract: We discuss recent observations of accreting binary pulsars with the all-sky BATSE instrument on the Compton Gamma Ray Observatory. BATSE has detected and studied nearly half of the known accreting pulsar systems. Continuous timing studies over a two-year period have yielded accurate orbital parameters for 9 of these systems, as well as new insights into long-term accretion torque histories.

Journal ArticleDOI
26 Jun 1997-Nature
TL;DR: In this paper, spectroscopic observations of the possible optical counterpart to the y-ray burst GRB970508 were reported, showing that the spectrum is mostly featureless, except for a few prominent absorption lines which were attributed to the presence of an absorption system along the line of sight at redshift z = 0835.
Abstract: Brief, intense bursts of y-rays occur approximately daily from random directions in space, but their origin has remained unknown since their initial detection almost 25 years ago Arguments based on their observed isotropy and apparent brightness distribution are not sufficient to constrain the location of the bursts to a local or cosmological origin The recent detection of a counterpart to a y-ray burst at other wavelengths has therefore raised the hope that the sources of these energetic events might soon be revealed Here we report spectroscopic observations of the possible optical counterpart to the y-ray burst GRB970508 The spectrum is mostly featureless, except for a few prominent absorption lines which we attribute to the presence of an absorption system along the line of sight at redshift z = 0835 Coupled with the absence of Lyman-α forest features in the spectra, our results imply that the optical transient lies at 0835 ≾ z ≾ 23 If the optical transient is indeed the counterpart of GRB970508, our results provide the first direct limits on the distance to a y-ray burst, confirming that at least some of these events lie at cosmological distances, and are thus highly energetic

Journal ArticleDOI
01 Apr 1997
TL;DR: The superposition of many ON/OFF sources with strictly alternating ON- and OFF-periods can produce aggregate network traffic that exhibits the Joseph Effect, and this mathematical result can be combined with modern high-performance computing capabilities to yield a simple and efficient linear-time algorithm for generating self-similar traffic traces.
Abstract: We state and prove the following key mathematical result in self-similar traffic modeling: the superposition of many ON/OFF sources (also known as packet trains) with strictly alternating ON- and OFF-periods and whose ON-periods or OFF-periods exhibit the Noah Effect (i.e., have high variability or infinite variance) can produce aggregate network traffic that exhibits the Joseph Effect (i.e., is self-similar or long-range dependent). There is, moreover, a simple relation between the parameters describing the intensities of the Noah Effect (high variability) and the Joseph Effect (self-similarity). This provides a simple physical explanation for the presence of self-similar traffic patterns in modern high-speed network traffic that is consistent with traffic measurements at the source level. We illustrate how this mathematical result can be combined with modern high-performance computing capabilities to yield a simple and efficient linear-time algorithm for generating self-similar traffic traces.We also show how to obtain in the limit a Levy stable motion, that is, a process with stationary and independent increments but with infinite variance marginals. While we have presently no empirical evidence that such a limit is consistent with measured network traffic, the result might prove relevant for some future networking scenarios.

Journal ArticleDOI
TL;DR: The key to understanding how genomic regulatory networks are organized, and how they work, lies in experimental analysis of cis-regulatory systems at all levels of the regulatory network.
Abstract: The gene regulatory apparatus that directs development is encoded in the DNA, in the form of organized arrays of transcription factor target sites. Genes are regulated by interactions with multiple transcription factors and the target sites for the transcription factors required for the control of each gene constitute its cis-regulatory system. These systems are remarkably complex. Their hardwired internal organization enables them to behave as genomic information processing systems. Developmental gene regulatory networks consist of the cis-regulatory systems of all the relevant genes and the regulatory linkages amongst them. Though there is yet little explicit information, some general properties of genomic regulatory networks have become apparent. The key to understanding how genomic regulatory networks are organized, and how they work, lies in experimental analysis of cis-regulatory systems at all levels of the regulatory network.