scispace - formally typeset
Search or ask a question
Institution

Commonwealth Scientific and Industrial Research Organisation

GovernmentCanberra, Australian Capital Territory, Australia
About: Commonwealth Scientific and Industrial Research Organisation is a government organization based out in Canberra, Australian Capital Territory, Australia. It is known for research contribution in the topics: Population & Soil water. The organization has 33765 authors who have published 79910 publications receiving 3356114 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The dust cycle is an integral part of the Earth system as discussed by the authors, it carries organic material, contributes directly to the carbon cycle and carries iron which is vital to ocean productivity and the ocean-atmosphere CO2 exchange.

768 citations

Journal ArticleDOI
07 Aug 2009-Science
TL;DR: Increased demand and advanced techniques could lead to more refined mapping and management of soils, and conventional soil mapping delineates space mostly according to qualitative criteria and renders maps using a series of polygons, which limits resolution.
Abstract: Soils are increasingly recognized as major contributors to ecosystem services such as food production and climate regulation ( 1 , 2 ), and demand for up-to-date and relevant soil information is soaring. But communicating such information among diverse audiences remains challenging because of inconsistent use of technical jargon, and outdated, imprecise methods. Also, spatial resolutions of soil maps for most parts of the world are too low to help with practical land management. While other earth sciences (e.g., climatology, geology) have become more quantitative and have taken advantage of the digital revolution, conventional soil mapping delineates space mostly according to qualitative criteria and renders maps using a series of polygons, which limits resolution. These maps do not adequately express the complexity of soils across a landscape in an easily understandable way.

766 citations

Journal ArticleDOI
01 Oct 2006-Diabetes
TL;DR: It is demonstrated that acute IL- 6 treatment enhances insulin-stimulated glucose disposal in humans in vivo, while the effects of IL-6 on glucose and fatty acid metabolism in vitro appear to be mediated by AMPK.
Abstract: Although interleukin-6 (IL-6) has been associated with insulin resistance, little is known regarding the effects of IL-6 on insulin sensitivity in humans in vivo. Here, we show that IL-6 infusion increases glucose disposal without affecting the complete suppression of endogenous glucose production during a hyperinsulinemic-euglycemic clamp in healthy humans. Because skeletal muscle accounts for most of the insulin-stimulated glucose disposal in vivo, we examined the mechanism(s) by which IL-6 may affect muscle metabolism using L6 myotubes. IL-6 treatment increased fatty acid oxidation, basal and insulin-stimulated glucose uptake, and translocation of GLUT4 to the plasma membrane. Furthermore, IL-6 rapidly and markedly increased AMP-activated protein kinase (AMPK). To determine whether the activation of AMPK mediated cellular metabolic events, we conducted experiments using L6 myotubes infected with dominant-negative AMPK alpha-subunit. The effects described above were abrogated in AMPK dominant-negative-infected cells. Our results demonstrate that acute IL-6 treatment enhances insulin-stimulated glucose disposal in humans in vivo, while the effects of IL-6 on glucose and fatty acid metabolism in vitro appear to be mediated by AMPK.

765 citations

Journal ArticleDOI
TL;DR: In this article, a review of evidence from various sources can be used to assess whether NPP or the rate of decomposition has the greater temperature sensitivity, and hence whether warming is likely to lead to an increase or decrease in soil organic carbon.
Abstract: The world's soils contain about 1500 Gt of organic carbon to a depth of 1m and a further 900 Gt from 1-2m. A change of total soil organic carbon by just 10% would thus be equivalent to all the anthropogenic CO2 emitted over 30 years. Warming is likely to increase both the rate of decomposition and net primary production (NPP), with a fraction of NPP forming new organic carbon. Evidence from various sources can be used to assess whether NPP or the rate of decomposition has the greater temperature sensitivity, and, hence, whether warming is likely to lead to an increase or decrease in soil organic carbon. Evidence is reviewed from laboratory-based incubations, field measurements of organic carbon storage, carbon isotope ratios and soil respiration with either naturally varying tempera- tures or after experimentally increasing soil temperatures. Estimates of terrestrial carbon stored at the Last Glacial Maximum are also reviewed. The review concludes that the temper- ature dependence of organic matter decomposition can be best described as: d(T) = exp(3.36 (T 40)/(T + 31.79)) where d(T) is the normalised decomposition rate at temperature T (in C). In this equation, decomposition rate is normalised to '1' at 40 C. The review concludes by simulating the likely changes in soil organic carbon with warm- ing. In summary, it appears likely that warming will have the effect of reducing soil organic carbon by stimulating decomposition rates more than NPP. However, increasing CO2 is likely to simultaneously have the effect of increasing soil organic carbon through increases in NPP. Any changes are also likely to be very slow. The net effect of changes in soil organic carbon on atmospheric CO2 loading over the next decades to centuries is, therefore, likely to be small.

762 citations

Book ChapterDOI
TL;DR: In this paper, it was shown that the error due to heat conduction to the supports is particularly important with natural convection, especially where the heat loss and the temperature rise of the cylinder are calculated from the voltage drop across it.
Abstract: Publisher Summary Accurate knowledge of the overall convective heat transfer from circular cylinders is of importance in a number of fields, such as boiler design, hotwire anemometry, and the rating of electrical conductors. The wide dispersion in the published experimental data for the heat transfer from smooth circular cylinders by natural and forced convection is attributed to various factors associated with the experiments. The error due to heat conduction to the supports is particularly important with natural convection, especially where the heat loss and the temperature rise of the cylinder are calculated from the voltage drop across it. A common cause of error is the use of too small a space ratio, so that the temperature and velocity fields are distorted. To reduce this error to less than l%, the space ratio D c /D for natural convection or D T /D for forced convection should exceed 100. The error caused by blockage with wind tunnel measurements can be calculated depending on the type of tunnel. One of the greatest sources of error with forced convection is the failure to allow for the effect of stream turbulence.

761 citations


Authors

Showing all 33864 results

NameH-indexPapersCitations
David R. Williams1782034138789
Mark E. Cooper1581463124887
Kevin J. Gaston15075085635
Liming Dai14178182937
John D. Potter13779575310
Lei Zhang135224099365
Harold A. Mooney135450100404
Frederick M. Ausubel13338960365
Rajkumar Buyya133106695164
Robert B. Jackson13245891332
Peter Hall132164085019
Frank Caruso13164161748
Paul J. Crutzen13046180651
Andrew Y. Ng130345164995
Lei Zhang130231286950
Network Information
Related Institutions (5)
University of Queensland
155.7K papers, 5.7M citations

93% related

University of Melbourne
174.8K papers, 6.3M citations

91% related

Spanish National Research Council
220.4K papers, 7.6M citations

90% related

University of Sydney
187.3K papers, 6.1M citations

90% related

Texas A&M University
164.3K papers, 5.7M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202357
2022223
20213,358
20203,613
20193,600
20183,262