scispace - formally typeset
Search or ask a question

Showing papers by "Commonwealth Scientific and Industrial Research Organisation published in 2014"


Journal ArticleDOI
TL;DR: Shape memory alloys (SMAs) are a class of shape memory materials (SMMs) which have the ability to "memorise" or retain their previous form when subjected to certain stimulus such as thermomechanical or magnetic variations.

2,818 citations


Journal ArticleDOI
Bernhard Misof, Shanlin Liu, Karen Meusemann1, Ralph S. Peters, Alexander Donath, Christoph Mayer, Paul B. Frandsen2, Jessica L. Ware2, Tomas Flouri3, Rolf G. Beutel4, Oliver Niehuis, Malte Petersen, Fernando Izquierdo-Carrasco3, Torsten Wappler5, Jes Rust5, Andre J. Aberer3, Ulrike Aspöck6, Ulrike Aspöck7, Horst Aspöck6, Daniela Bartel6, Alexander Blanke8, Simon Berger3, Alexander Böhm6, Thomas R. Buckley9, Brett Calcott10, Junqing Chen, Frank Friedrich11, Makiko Fukui12, Mari Fujita8, Carola Greve, Peter Grobe, Shengchang Gu, Ying Huang, Lars S. Jermiin1, Akito Y. Kawahara13, Lars Krogmann14, Martin Kubiak11, Robert Lanfear15, Robert Lanfear16, Robert Lanfear17, Harald Letsch6, Yiyuan Li, Zhenyu Li, Jiguang Li, Haorong Lu, Ryuichiro Machida8, Yuta Mashimo8, Pashalia Kapli18, Pashalia Kapli3, Duane D. McKenna19, Guanliang Meng, Yasutaka Nakagaki8, José Luis Navarrete-Heredia20, Michael Ott21, Yanxiang Ou, Günther Pass6, Lars Podsiadlowski5, Hans Pohl4, Björn M. von Reumont22, Kai Schütte11, Kaoru Sekiya8, Shota Shimizu8, Adam Slipinski1, Alexandros Stamatakis23, Alexandros Stamatakis3, Wenhui Song, Xu Su, Nikolaus U. Szucsich6, Meihua Tan, Xuemei Tan, Min Tang, Jingbo Tang, Gerald Timelthaler6, Shigekazu Tomizuka8, Michelle D. Trautwein24, Xiaoli Tong25, Toshiki Uchifune8, Manfred Walzl6, Brian M. Wiegmann26, Jeanne Wilbrandt, Benjamin Wipfler4, Thomas K. F. Wong1, Qiong Wu, Gengxiong Wu, Yinlong Xie, Shenzhou Yang, Qing Yang, David K. Yeates1, Kazunori Yoshizawa27, Qing Zhang, Rui Zhang, Wenwei Zhang, Yunhui Zhang, Jing Zhao, Chengran Zhou, Lili Zhou, Tanja Ziesmann, Shijie Zou, Yingrui Li, Xun Xu, Yong Zhang, Huanming Yang, Jian Wang, Jun Wang, Karl M. Kjer2, Xin Zhou 
07 Nov 2014-Science
TL;DR: The phylogeny of all major insect lineages reveals how and when insects diversified and provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.
Abstract: Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.

1,998 citations


Journal ArticleDOI
TL;DR: It is reported that flat, uniform thin films of this material can be deposited by a one-step, solvent-induced, fast crystallization method involving spin-coating of a DMF solution of CH3NH3PbI3 followed immediately by exposure to chlorobenzene to induce crystallization.
Abstract: Thin-film photovoltaics based on alkylammonium lead iodide perovskite light absorbers have recently emerged as a promising low-cost solar energy harvesting technology. To date, the perovskite layer in these efficient solar cells has generally been fabricated by either vapor deposition or a two-step sequential deposition process. We report that flat, uniform thin films of this material can be deposited by a one-step, solvent-induced, fast crystallization method involving spin-coating of a DMF solution of CH3NH3PbI3 followed immediately by exposure to chlorobenzene to induce crystallization. Analysis of the devices and films revealed that the perovskite films consist of large crystalline grains with sizes up to microns. Planar heterojunction solar cells constructed with these solution-processed thin films yielded an average power conversion efficiency of 13.9±0.7% and a steady state efficiency of 13% under standard AM 1.5 conditions.

1,554 citations


Journal ArticleDOI
21 Jan 2014-eLife
TL;DR: In this article, the authors present the first systematic analysis of threat for a globally distributed lineage of 1,041 chondrichthyan fishes (sharks, rays, and chimaeras).
Abstract: The rapid expansion of human activities threatens ocean-wide biodiversity. Numerous marine animal populations have declined, yet it remains unclear whether these trends are symptomatic of a chronic accumulation of global marine extinction risk. We present the first systematic analysis of threat for a globally distributed lineage of 1,041 chondrichthyan fishes—sharks, rays, and chimaeras. We estimate that one-quarter are threatened according to IUCN Red List criteria due to overfishing (targeted and incidental). Large-bodied, shallow-water species are at greatest risk and five out of the seven most threatened families are rays. Overall chondrichthyan extinction risk is substantially higher than for most other vertebrates, and only one-third of species are considered safe. Population depletion has occurred throughout the world's ice-free waters, but is particularly prevalent in the Indo-Pacific Biodiversity Triangle and Mediterranean Sea. Improved management of fisheries and trade is urgently needed to avoid extinctions and promote population recovery.

1,467 citations


Journal ArticleDOI
TL;DR: In this paper, a comprehensive summary of studies that simulate climate change impacts on agriculture are reported in a meta-analysis, which suggests that aggregate yield losses should be expected for wheat, rice and maize in temperate and tropical growing regions even under relatively moderate levels of local warming.
Abstract: A comprehensive summary of studies that simulate climate change impacts on agriculture are now reported in a meta-analysis. Findings suggest that, without measures to adapt to changing conditions, aggregate yield losses should be expected for wheat, rice and maize in temperate and tropical growing regions even under relatively moderate levels of local warming.

1,458 citations


Journal ArticleDOI
TL;DR: This paper updates the earlier work by Keating et?al.
Abstract: Agricultural systems models worldwide are increasingly being used to explore options and solutions for the food security, climate change adaptation and mitigation and carbon trading problem domains. APSIM (Agricultural Production Systems sIMulator) is one such model that continues to be applied and adapted to this challenging research agenda. From its inception twenty years ago, APSIM has evolved into a framework containing many of the key models required to explore changes in agricultural landscapes with capability ranging from simulation of gene expression through to multi-field farms and beyond.Keating et?al. (2003) described many of the fundamental attributes of APSIM in detail. Much has changed in the last decade, and the APSIM community has been exploring novel scientific domains and utilising software developments in social media, web and mobile applications to provide simulation tools adapted to new demands.This paper updates the earlier work by Keating et?al. (2003) and chronicles the changing external challenges and opportunities being placed on APSIM during the last decade. It also explores and discusses how APSIM has been evolving to a "next generation" framework with improved features and capabilities that allow its use in many diverse topics. APSIM is an agricultural modelling framework used extensively worldwide.It can simulate a wide range of agricultural systems.It begins its third decade evolving into an agro-ecosystem framework.

1,151 citations


Journal ArticleDOI
TL;DR: A narrative review explores the relevant contemporary scientific literature to provide a general perspective of the role of diet and other environmental factors in modulating the composition and metabolic activity of the human gut microbiota, which in turn can impact health.
Abstract: There is growing recognition of the role of diet and other environmental factors in modulating the composition and metabolic activity of the human gut microbiota, which in turn can impact health. This narrative review explores the relevant contemporary scientific literature to provide a general perspective of this broad area. Molecular technologies have greatly advanced our understanding of the complexity and diversity of the gut microbial communities within and between individuals. Diet, particularly macronutrients, has a major role in shaping the composition and activity of these complex populations. Despite the body of knowledge that exists on the effects of carbohydrates there are still many unanswered questions. The impacts of dietary fats and protein on the gut microbiota are less well defined. Both short- and long-term dietary change can influence the microbial profiles, and infant nutrition may have life-long consequences through microbial modulation of the immune system. The impact of environmental factors, including aspects of lifestyle, on the microbiota is particularly poorly understood but some of these factors are described. We also discuss the use and potential benefits of prebiotics and probiotics to modify microbial populations. A description of some areas that should be addressed in future research is also presented.

1,045 citations


Journal ArticleDOI
TL;DR: In this paper, the credibility of bioenergy with carbon capture and storage as a climate change mitigation option is investigated. But its credibility is unproven and its widespread deployment in climate stabilization scenarios might become a dangerous distraction.
Abstract: Bioenergy with carbon capture and storage could be used to remove carbon dioxide from the atmosphere. However, its credibility as a climate change mitigation option is unproven and its widespread deployment in climate stabilization scenarios might become a dangerous distraction.

871 citations


Journal ArticleDOI
TL;DR: This paper explored a broader conceptualisation of adaptation pathways that draws on path-thinking in the sustainable development domain to consider the implications of path dependency, interactions between adaptation plans, vested interests and global change, and situations where values, interests or institutions constrain societal responses to change.
Abstract: The need to adapt to climate change is now widely recognised as evidence of its impacts on social and natural systems grows and greenhouse gas emissions continue unabated. Yet efforts to adapt to climate change, as reported in the literature over the last decade and in selected case studies, have not led to substantial rates of implementation of adaptation actions despite substantial investments in adaptation science. Moreover, implemented actions have been mostly incremental and focused on proximate causes; there are far fewer reports of more systemic or transformative actions. We found that the nature and effectiveness of responses was strongly influenced by framing. Recent decision-oriented approaches that aim to overcome this situation are framed within a “pathways” metaphor to emphasise the need for robust decision making within adaptive processes in the face of uncertainty and inter-temporal complexity. However, to date, such “adaptation pathways” approaches have mostly focused on contexts with clearly identified decision-makers and unambiguous goals; as a result, they generally assume prevailing governance regimes are conducive for adaptation and hence constrain responses to proximate causes of vulnerability. In this paper, we explore a broader conceptualisation of “adaptation pathways” that draws on ‘pathways thinking’ in the sustainable development domain to consider the implications of path dependency, interactions between adaptation plans, vested interests and global change, and situations where values, interests, or institutions constrain societal responses to change. This re-conceptualisation of adaptation pathways aims to inform decision makers about integrating incremental actions on proximate causes with the transformative aspects of societal change. Case studies illustrate what this might entail. The paper ends with a call for further exploration of theory, methods and procedures to operationalise this broader conceptualisation of adaptation.

801 citations


Journal ArticleDOI
01 Jan 2014
TL;DR: In this article, the authors explore the concept of sensing as a service and how it fits with the Internet of Things (IoT) and identify the major open challenges and issues.
Abstract: The world population is growing at a rapid pace. Towns and cities are accommodating half of the world's population thereby creating tremendous pressure on every aspect of urban living. Cities are known to have large concentration of resources and facilities. Such environments attract people from rural areas. However, unprecedented attraction has now become an overwhelming issue for city governance and politics. The enormous pressure towards efficient city management has triggered various Smart City initiatives by both government and private sector businesses to invest in information and communication technologies to find sustainable solutions to the growing issues. The Internet of Things IoT has also gained significant attention over the past decade. IoT envisions to connect billions of sensors to the Internet and expects to use them for efficient and effective resource management in Smart Cities. Today, infrastructure, platforms and software applications are offered as services using cloud technologies. In this paper, we explore the concept of sensing as a service and how it fits with the IoT. Our objective is to investigate the concept of sensing as a service model in technological, economical and social perspectives and identify the major open challenges and issues. Copyright © 2013 John Wiley & Sons, Ltd.

756 citations


Journal ArticleDOI
TL;DR: New analysis is presented that tentatively links increases in climate variability with increasing food insecurity in the future and highlights the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers.
Abstract: The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades.

Journal ArticleDOI
06 Nov 2014-Nature
TL;DR: A more coordinated approach to risk management and land-use planning in these coupled systems is needed because fire will never operate as a natural ecosystem process, and the impact on society will continue to grow.
Abstract: The impacts of escalating wildfire in many regions - the lives and homes lost, the expense of suppression and the damage to ecosystem services - necessitate a more sustainable coexistence with wildfire. Climate change and continued development on fire-prone landscapes will only compound current problems. Emerging strategies for managing ecosystems and mitigating risks to human communities provide some hope, although greater recognition of their inherent variation and links is crucial. Without a more integrated framework, fire will never operate as a natural ecosystem process, and the impact on society will continue to grow. A more coordinated approach to risk management and land-use planning in these coupled systems is needed.

Journal ArticleDOI
24 Apr 2014-Nature
TL;DR: Testing the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate.
Abstract: Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

Journal ArticleDOI
TL;DR: In this article, the authors use SDSS+GALEX+Galaxy Zoo data to study the quenching of star formation in low-redshift galaxies and conclude that the green valley between the blue cloud of star-forming galaxies and the red sequence of quiescent galaxies in the colour-mass diagram is not a single transitional state through which most blue galaxies evolve into red galaxies.
Abstract: We use SDSS+GALEX+Galaxy Zoo data to study the quenching of star formation in low-redshift galaxies. We show that the green valley between the blue cloud of star-forming galaxies and the red sequence of quiescent galaxies in the colour-mass diagram is not a single transitional state through which most blue galaxies evolve into red galaxies. Rather, an analysis that takes morphology into account makes clear that only a small population of blue early-type galaxies move rapidly across the green valley after the morphologies are transformed from disc to spheroid and star formation is quenched rapidly. In contrast, the majority of blue star-forming galaxies have significant discs, and they retain their late-type morphologies as their star formation rates decline very slowly. We summarize a range of observations that lead to these conclusions, including UV-optical colours and halo masses, which both show a striking dependence on morphological type. We interpret these results in terms of the evolution of cosmic gas supply and gas reservoirs. We conclude that late-type galaxies are consistent with a scenario where the cosmic supply of gas is shut off, perhaps at a critical halo mass, followed by a slow exhaustion of the remaining gas over several Gyr, driven by secular and/or environmental processes. In contrast, early-type galaxies require a scenario where the gas supply and gas reservoir are destroyed virtually instantaneously, with rapid quenching accompanied by a morphological transformation from disc to spheroid. This gas reservoir destruction could be the consequence of a major merger, which in most cases transforms galaxies from disc to elliptical morphology, and mergers could play a role in inducing black hole accretion and possibly active galactic nuclei feedback.

Journal ArticleDOI
TL;DR: In this article, the authors show that CO2 emissions track the high end of the latest generation of emissions scenarios, due to lower than anticipated carbon intensity improvements of emerging economies and higher global gross domestic product growth.
Abstract: Efforts to limit climate change below a given temperature level require that global emissions of CO2 cumulated over time remain below a limited quota. This quota varies depending on the temperature level, the desired probability of staying below this level and the contributions of other gases. In spite of this restriction, global emissions of CO2 from fossil fuel combustion and cement production have continued to grow by 2.5% per year on average over the past decade. Two thirds of the CO2 emission quota consistent with a 2 °C temperature limit has already been used, and the total quota will likely be exhausted in a further 30 years at the 2014 emissions rates. We show that CO2 emissions track the high end of the latest generation of emissions scenarios, due to lower than anticipated carbon intensity improvements of emerging economies and higher global gross domestic product growth. In the absence of more stringent mitigation, these trends are set to continue and further reduce the remaining quota until the onset of a potential new climate agreement in 2020. Breaking current emission trends in the short term is key to retaining credible climate targets within a rapidly diminishing emission quota.

Journal ArticleDOI
TL;DR: Understanding when the first SDM software package (bioclim) was developed and how a broad range of applications using the package was explored within the first 8 years following its release is clarified.
Abstract: Aim Interest in species distribution models (SDMs) and related niche studies has increased dramatically in recent years, with several books and reviews being prepared since 2000. The earliest SDM studies are dealt with only briefly even in the books. Consequently, many researchers are unaware of when the first SDM software package (bioclim) was developed and how a broad range of applications using the package was explored within the first 8 years following its release. The purpose of this study is to clarify these early developments and initial applications, as well as to highlight bioclim's continuing relevance to current studies. Location Mainly Australia and New Zealand, but also some global applications. Methods We outline the development of the bioclim package, early applications (1984–1991) and its current relevance. Results bioclim was the first SDM package to be widely used. Early applications explored many of the possible uses of SDMs in conservation biogeography, such as quantifying the environmental niche of species, identifying areas where a species might be invasive, assisting conservation planning and assessing the likely impacts of climate change on species distributions. Main conclusions Understanding this pioneering work is worthwhile as bioclim was for many years one of the leading SDM packages and remains widely used. Climate interpolation methods developed for bioclim were used to create the WorldClim database, the most common source of climate data for SDM studies, and bioclim variables are used in about 76% of recent published MaxEnt analyses of terrestrial ecosystems. Also, some of the bioclim studies from the late 1980s, such as measuring niche (both realized and fundamental) and assessing possible impacts of climate change, are still highly relevant to key conservation biogeography issues.

Journal ArticleDOI
TL;DR: In this article, the authors present a wide-field interferometric imager that uses the w-stacking algorithm and can make use of the W-snapshot algorithm, which is an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution with correct polarization correction.
Abstract: Astronomical wide-field imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new wide-field interferometric imager that uses the w-stacking algorithm and can make use of the w-snapshot algorithm. The performance dependences of CASA's w-projection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarization correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the lowfrequency Square Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released.

Journal ArticleDOI
TL;DR: In this review, the current technologies that enable the precise positioning of MOFs onto different platforms are presented and examples of devices in which the control of MOF position and functionalisation will play a major technological role are presented.
Abstract: Metal organic frameworks (MOFs) offer the highest surface areas per gram of any known material. As such, they epitomise resource productivity in uses where specific surface area is critical, such as adsorption, storage, filtration and catalysis. However, the ability to control the position of MOFs is also crucial for their use in devices for applications such as sensing, delivery, sequestration, molecular transport, electronics, energy production, optics, bioreactors and catalysis. In this review we present the current technologies that enable the precise positioning of MOFs onto different platforms. Methods for permanent localisation, dynamic localisation, and spatial control of functional materials within MOF crystals are described. Finally, examples of devices in which the control of MOF position and functionalisation will play a major technological role are presented.


Journal ArticleDOI
TL;DR: In this article, the applicability of visible (Vis), near-infrared (NIR), and mid infrared (MIR) reflectance spectroscopy for the prediction of soil properties is discussed.
Abstract: This review addresses the applicability of visible (Vis), near-infrared (NIR), and mid-infrared (MIR) reflectance spectroscopy for the prediction of soil properties. We address (1) the properties that can be predicted and the accuracy of the predictions, (2) the most suitable spectral regions for specific soil properties, (3) the number of predictions reported for each property, and (4) in-field versus laboratory spectral techniques.We found the following properties to be successfully predicted: soil water content, texture, soil carbon (C), cation exchange capacity, calcium and magnesium (exchangeable), total nitrogen (N), pH, concentration of metals/metalloids, microbial size, and activity. Generally, MIR produced better predictions than Vis-NIR, but Vis-NIR outperformed MIR for a number of properties (e.g., biological). An advantage of Vis-NIR is instrument portability although a new range of MIR portable devices is becoming available. In-field predictions for clay, water, total organic C, extra...

Journal ArticleDOI
TL;DR: An overview of the most exploited vulnerabilities in existing hardware, software, and network layers is presented and critiques of existing state-of-the-art mitigation techniques as why they do or don't work are described.

Journal ArticleDOI
TL;DR: In this article, a nearly cubic NH2CH═NH2PbI3 (FAPbI 3) perovskite was synthesized for the mesoscopic solar cells.
Abstract: A new nearly cubic NH2CH═NH2PbI3 (FAPbI3) perovskite was synthesized for the mesoscopic solar cells. The measured band gap of bulk FAPbI3 is 1.43 eV and it is therefore potentially superior than the CH3NH3PbI3 (MAPbI3) as the light harvester. A homogeneous FAPbI3 perovskite layer was deposited on the TiO2 surface by utilizing the in situ dipping technology. As a result, a high efficiency of 7.5% was achieved using P3HT as the hole transport material. The nearly cubic crystal structure and appropriate band gap render this new FAPbI3 perovskite extremely attractive for next generation high-efficiency low-cost solar cells.

Journal ArticleDOI
31 Jan 2014-Science
TL;DR: Using data from 2154 sites in savannas across Africa, Australia, and South America, it is found that increasing moisture availability drives increases in fire and tree basal area, whereas fire reduces tree basal Area.
Abstract: Ecologists have long sought to understand the factors controlling the structure of savanna vegetation. Using data from 2154 sites in savannas across Africa, Australia, and South America, we found that increasing moisture availability drives increases in fire and tree basal area, whereas fire reduces tree basal area. However, among continents, the magnitude of these effects varied substantially, so that a single model cannot adequately represent savanna woody biomass across these regions. Historical and environmental differences drive the regional variation in the functional relationships between woody vegetation, fire, and climate. These same differences will determine the regional responses of vegetation to future climates, with implications for global carbon stocks.

Journal ArticleDOI
TL;DR: This report constitutes the first emergence of COFs as proton conducting materials.
Abstract: Two new chemically stable functional crystalline covalent organic frameworkds (COFs) (Tp-Azo and Tp-Stb) were synthesized using the Schiff base reaction between triformylphloroglucinol (Tp) and 4,4′-azodianiline (Azo) or 4,4′-diaminostilbene (Stb), respectively. Both COFs show the expected keto-enamine form, and high stability toward boiling water, strong acidic, and basic media. H3PO4 doping in Tp-Azo leads to immobilization of the acid within the porous framework, which facilitates proton conduction in both the hydrous (σ = 9.9 × 10–4 S cm–1) and anhydrous state (σ = 6.7 × 10–5 S cm–1). This report constitutes the first emergence of COFs as proton conducting materials.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed the use of influence diagrams for defining, mapping, analyzing, modeling, and communicating the risk of a compound event, which is a combination of variables or events that lead to an extreme impact.
Abstract: Climate and weather variables such as rainfall, temperature, and pressure are indicators for hazards such as tropical cyclones, floods, and fires. The impact of these events can be due to a single variable being in an extreme state, but more often it is the result of a combination of variables not all of which are necessarily extreme. Here, the combination of variables or events that lead to an extreme impact is referred to as a compound event. Any given compound event will depend upon the nature and number of physical variables, the range of spatial and temporal scales, the strength of dependence between processes, and the perspective of the stakeholder who defines the impact. Modeling compound events is a large, complex, and interdisciplinary undertaking. To facilitate this task we propose the use of influence diagrams for defining, mapping, analyzing, modeling, and communicating the risk of the compound event. Ultimately, a greater appreciation of compound events will lead to further insight and a changed perspective on how impact risks are associated with climate-related hazards. WIREs Clim Change 2014, 5:113–128. doi: 10.1002/wcc.252 Conflict of interest: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website.

Journal ArticleDOI
TL;DR: Fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes.
Abstract: Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y(-1)), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US$10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y(-1). Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y(-1) could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient--measured in "total abatement calorie cost"--than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes.

Journal ArticleDOI
TL;DR: Meeting international targets for expanding protected areas could simultaneously contribute to species conservation, but only if the distribution of threatened species informs the future establishment of protected areas.
Abstract: Governments have agreed to expand the global protected area network from 13% to 17% of the world's land surface by 2020 (Aichi target 11) and to prevent the further loss of known threatened species (Aichi target 12). These targets are interdependent, as protected areas can stem biodiversity loss when strategically located and effectively managed. However, the global protected area estate is currently biased toward locations that are cheap to protect and away from important areas for biodiversity. Here we use data on the distribution of protected areas and threatened terrestrial birds, mammals, and amphibians to assess current and possible future coverage of these species under the convention. We discover that 17% of the 4,118 threatened vertebrates are not found in a single protected area and that fully 85% are not adequately covered (i.e., to a level consistent with their likely persistence). Using systematic conservation planning, we show that expanding protected areas to reach 17% coverage by protecting the cheapest land, even if ecoregionally representative, would increase the number of threatened vertebrates covered by only 6%. However, the nonlinear relationship between the cost of acquiring land and species coverage means that fivefold more threatened vertebrates could be adequately covered for only 1.5 times the cost of the cheapest solution, if cost efficiency and threatened vertebrates are both incorporated into protected area decision making. These results are robust to known errors in the vertebrate range maps. The Convention on Biological Diversity targets may stimulate major expansion of the global protected area estate. If this expansion is to secure a future for imperiled species, new protected areas must be sited more strategically than is presently the case.

Journal ArticleDOI
TL;DR: This work explores how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change.
Abstract: Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture’s reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (∼4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection.

Journal ArticleDOI
27 Mar 2014-Nature
TL;DR: Using the velocity of climate change to derive spatial trajectories for climatic niches from 1960 to 2009 and from 2006 to 2100 is used to infer changes in species distributions and gives global and regional maps of the expected direction and rate of shifts of climate migrants, and suggests areas of potential loss of species richness.
Abstract: Global maps constructed using climate-change velocities to derive spatial trajectories for climatic niches between 1960 and 2100 show past and future shifts in ecological climate niches; properties of these trajectories are used to infer changes in species distributions, and thus identify areas that will act as climate sources and sinks, and geographical barriers to species migrations. To survive in a changing climate, a species may need to move in order to stay in an area with a constant average temperature. Such mobility would depend on an ability to keep pace with a moving climate — and on the absence of physical barriers to migration. These authors use the velocity of climate change to construct a global map of how ecological climate niches have shifted in recent decades and go on to predict changes in species distribution to the end of this century. The map indicates areas that will act as climate sources and sinks, and geographical barriers likely to impede species migration. The data show that geographical connections and physical barriers — mostly coasts — have profound effects on the expected ability of organisms to track their preferred climate. This work underlines the importance of migration corridors linking warmer and cooler areas as a means of maintaining biodiversity. The reorganization of patterns of species diversity driven by anthropogenic climate change, and the consequences for humans1, are not yet fully understood or appreciated2,3. Nevertheless, changes in climate conditions are useful for predicting shifts in species distributions at global4 and local scales5. Here we use the velocity of climate change6,7 to derive spatial trajectories for climatic niches from 1960 to 2009 (ref. 7) and from 2006 to 2100, and use the properties of these trajectories to infer changes in species distributions. Coastlines act as barriers and locally cooler areas act as attractors for trajectories, creating source and sink areas for local climatic conditions. Climate source areas indicate where locally novel conditions are not connected to areas where similar climates previously occurred, and are thereby inaccessible to climate migrants tracking isotherms: 16% of global surface area for 1960 to 2009, and 34% of ocean for the ‘business as usual’ climate scenario (representative concentration pathway (RCP) 8.5)8 representing continued use of fossil fuels without mitigation. Climate sink areas are where climate conditions locally disappear, potentially blocking the movement of climate migrants. Sink areas comprise 1.0% of ocean area and 3.6% of land and are prevalent on coasts and high ground. Using this approach to infer shifts in species distributions gives global and regional maps of the expected direction and rate of shifts of climate migrants, and suggests areas of potential loss of species richness.

Journal ArticleDOI
TL;DR: In this paper, an assessment of economic flood risk trends across Europe reveals high current and future stress on risk financing schemes, and the magnitude and distribution of losses can be contained by investing in flood protection, increasing insurance coverage or by expanding public compensation funds.
Abstract: An assessment of economic flood risk trends across Europe reveals high current and future stress on risk financing schemes. The magnitude and distribution of losses can be contained by investing in flood protection, increasing insurance coverage or by expanding public compensation funds. However, these climate change adaptation instruments have vastly different efficiency, equity and acceptability implications. Moreover, the spatial variation in disaster risk can necessitate cross-subsidies between individual countries in the European Union.