scispace - formally typeset
Search or ask a question
Institution

Environmental Molecular Sciences Laboratory

FacilityRichland, Washington, United States
About: Environmental Molecular Sciences Laboratory is a facility organization based out in Richland, Washington, United States. It is known for research contribution in the topics: Mass spectrometry & Ion. The organization has 1471 authors who have published 3010 publications receiving 169961 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of NWChem is provided focusing primarily on the core theoretical modules provided by the code and their parallel performance, as well as Scalable parallel implementations and modular software design enable efficient utilization of current computational architectures.

4,666 citations

Journal ArticleDOI
TL;DR: In this article, the correlationconsistent polarized core-valence basis sets (cc•pVXZ) for the atoms boron through neon have been extended to treat core and core•valence correlation effects, and the exponents of the core functions were determined by minimizing the difference between allelectron and valence only correlation energies obtained from HF+1+2 calculations on the ground states of the atoms.
Abstract: The correlation‐consistent polarized valence basis sets (cc‐pVXZ) for the atoms boron through neon have been extended to treat core and core‐valence correlation effects. Basis functions were added to the existing cc‐pVXZ sets to form correlation‐consistent polarized core‐valence sets (cc‐pCVXZ) in the usual pattern: Double zeta added (1s1p), triple zeta added (2s2p1d), quadruple zeta added (3s3p2d1f), and quintuple zeta added (4s4p3d2f1g). The exponents of the core functions were determined by minimizing the difference between all‐electron and valence‐only correlation energies obtained from HF+1+2 calculations on the ground states of the atoms. With the cc‐pCVXZ sets, core, core‐valence, and valence correlation energies all converge exponentially toward apparent complete basis set (CBS) limits, as do the corresponding all‐electron singles and doubles CI energies. Several test applications of the new sets are presented: The first two ionization potentials of boron, the 3P–5S separation in carbon, and the X...

2,666 citations

Journal ArticleDOI
TL;DR: In this paper, correlation consistent and augmented correlation consistent basis sets for the third row main group atoms gallium through krypton were determined for the gallium atom, and the results showed good convergence to an apparent complete basis set limit.
Abstract: Valence correlation consistent and augmented correlation consistent basis sets have been determined for the third row, main group atoms gallium through krypton. The methodology, originally developed for the first row atoms, was first applied to the selenium atom, resulting in the expected natural groupings of correlation functions (although higher angular momentum functions tend to be relatively more important for the third row atoms as they were for the second row atoms). After testing the generality of the conclusions for the gallium atom, the procedure was used to generate correlation consistent basis sets for all of the atoms gallium through krypton. The correlation consistent basis sets for the third row main group atoms are as follows: cc-pVDZ: (14s11p6d)/[5s4p2d]; cc-pVTZ: (20s13p9d1f )/[6s5p3d1f]; cc-pVQZ: (21s16p12d2 f1g)/[7s6p4d2 f1g]; cc-pV5Z: (26s17p13d3f2g1h)/[8s7p5d3f2g1h]. Augmented sets were obtained by adding diffuse functions to the above sets (one for each angular momentum present in the set), with the exponents of the additional functions optimized in calculations on the atomic anions. Test calculations on the atoms as well as selected molecules with the new basis sets show good convergence to an apparent complete basis set limit.

2,164 citations

Journal ArticleDOI
TL;DR: It is argued that the ready availability of information pertaining to the applications and theoretical models can substantially increase the likelihood of novice users obtaining the desired accuracy from their calculations while simultaneously making better use of computer resources.
Abstract: A role for electronic structure databases in assisting users of quantum chemistry applications select better model parameters is discussed in light of experiences gained from a software prototype known as the Computational Chemistry Input Assistant (CCIA). It is argued that the ready availability of information pertaining to the applications and theoretical models can substantially increase the likelihood of novice users obtaining the desired accuracy from their calculations while simultaneously making better use of computer resources. Expert users, who find themselves contemplating studies in new areas of research, may also benefit from the proposed tools. For maximum impact, this assistance should be provided while users are actively engaged in preparing calculations. © 1996 by John Wiley & Sons, Inc.

2,149 citations

Journal ArticleDOI
TL;DR: A review of the fundamental interactions of water with solid surfaces can be found in this paper, where the authors assimilated the results of the TM review with those covered by the authors to provide a current picture of water interactions on solid surfaces, such as how water adsorbs, what are the chemical and electrostatic forces that constitute the adsorbed layer, how is water thermally or non-thermally activated and how do coadsorbates influence these properties of water.

2,022 citations


Authors

Showing all 1477 results

NameH-indexPapersCitations
Jianming Zheng6616714688
Martin F. Jarrold6632818230
Douglas J. Tobias6621722663
Gordon A. Anderson6520312842
Scott A. Chambers6529613140
Milton L. Lee6563019754
Michel Dupuis6428134200
David C. Muddiman6332712861
Julia Laskin6335313109
Mark Girolami6336317238
Scott A. Shaffer6323113513
Jack Simons6341315941
Harold R. Udseth6212111645
Bruce C. Garrett6222917399
Kevin M. Rosso6238415874
Network Information
Related Institutions (5)
Oak Ridge National Laboratory
73.7K papers, 2.6M citations

92% related

Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

91% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202219
2021149
2020212
2019178
2018198