scispace - formally typeset
Search or ask a question
Institution

Environmental Molecular Sciences Laboratory

FacilityRichland, Washington, United States
About: Environmental Molecular Sciences Laboratory is a facility organization based out in Richland, Washington, United States. It is known for research contribution in the topics: Mass spectrometry & Ion. The organization has 1471 authors who have published 3010 publications receiving 169961 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results clearly demonstrate the dynamic nature of the Ba-containing phases that are active in the NO(x)() storage/reduction process and contribute to the understanding of the changes observed in the performances of these catalysts during actual operating conditions.
Abstract: The changes in the morphology of Ba-oxide-based NO(x)() storage/reduction catalysts were investigated using time-resolved X-ray diffraction, transmission electron microscopy, and energy dispersed spectroscopy. Large Ba(NO(3))(2) crystallites form on the alumina support when the catalyst is prepared by the incipient wetness method using an aqueous Ba(NO(3))(2) solution. Heating the sample to 873 K in a He flow results in the decomposition of the Ba(NO(3))(2) phase and the formation of both a monolayer BaO film strongly interacting with the alumina support and nanocrystalline BaO particles. Upon NO(2) exposure of these BaO phases at room temperature, small (nanosized) Ba(NO(3))(2) crystals and a monolayer of surface nitrate form. Heating this sample in NO(2) results in the coalescence of the nanocrystalline Ba(NO(3))(2) particles into large crystals. The average crystal size in the reformed Ba(NO(3))(2) layer is significantly smaller than that measured after the catalyst preparation. Evidence is also presented for the existence of a monolayer Ba(NO(3))(2) phase after thermal treatment in NO(2), in addition to these large crystals. These results clearly demonstrate the dynamic nature of the Ba-containing phases that are active in the NO(x)() storage/reduction process. The proposed morphology cycle may contribute to the understanding of the changes observed in the performances of these catalysts during actual operating conditions.

91 citations

Journal ArticleDOI
TL;DR: The reaction mechanisms of dissolved Mn(III) with organics showed two distinct mechanisms on the degradation of organic contaminants and the insights may be applied in natural manganese-rich environments and water treatment processes withManganese compounds.

91 citations

Journal ArticleDOI
TL;DR: In this article, the acid sites are shown to be Bronsted in nature and that their strength is significantly greater than those in zeolites, and the strongest sites on this solid acid, present at 0.03 mmol/g, have −ΔHav values of 52 kcal/mol for reaction with pyridine.
Abstract: Solid state NMR, calorimetry, and density functional theory (DFT) all provide a consistent interpretation of the acidity of the solid acid catalyst (SG)nAlCl2, which is prepared by reacting aluminum chloride with conditioned silica gel. These studies firmly establish that the acid sites are Bronsted in nature and that their strength is significantly greater than those in zeolites. Proton NMR results, including experiments exploiting 1H−27Al dipolar couplings, demonstrate that the Bronsted acid sites have an isotropic 1H chemical shift of 5.7 ppm and a concentration of 0.58 mmol/g. The strongest sites on this solid acid, present at 0.03 mmol/g, have −ΔHav values of 52 kcal/mol for reaction with pyridine. A value of 44 kcal/mol is maintained for incremental addition of pyridine up to 0.1 mmol/g. In comparison, −ΔHav for the strongest sites in zeolite HZSM-5 is only 42 kcal/mol. 15N magic angle spinning (MAS) NMR studies of adsorbed pyridine and 31P MAS NMR of trimethylphosphine confirm the Bronsted nature o...

91 citations

Journal ArticleDOI
TL;DR: A novel quantitative mass spectrometry (MS)-based proteomic method for site-specific identification and quantification of S-glutathionylation across different conditions and revealed that the most significantly enriched molecular function categories for proteins sensitive to SSG modifications were free radical scavenging and cell death/survival.

91 citations


Authors

Showing all 1477 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Yi Cui2201015199725
Donald G. Truhlar1651518157965
Ronald W. Davis155644151276
Richard D. Smith140118079758
Yuehe Lin11864155399
Robert C. Haddon11257752712
Lai-Sheng Wang10357636212
Mark H. Engelhard10354539864
Alex Guenther10044745476
Gordon E. Brown10045432152
X. Sunney Xie9822544104
Jun Li9863140958
Richard A. Friesner9736752729
Chongmin Wang9545133983
Network Information
Related Institutions (5)
Oak Ridge National Laboratory
73.7K papers, 2.6M citations

92% related

Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

91% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202219
2021149
2020212
2019178
2018198