scispace - formally typeset
Search or ask a question
Institution

Environmental Molecular Sciences Laboratory

FacilityRichland, Washington, United States
About: Environmental Molecular Sciences Laboratory is a facility organization based out in Richland, Washington, United States. It is known for research contribution in the topics: Mass spectrometry & Ion. The organization has 1471 authors who have published 3010 publications receiving 169961 citations.


Papers
More filters
Journal ArticleDOI
18 Apr 2018
TL;DR: This minireview aimed to give an overview of these advancements in metabolomics in the light of their contribution to targeted and untargeted metabolomics.
Abstract: Metabolomics has made significant progress in multiple fronts in the last 18 months. This minireview aimed to give an overview of these advancements in the light of their contribution to targeted and untargeted metabolomics. New computational approaches have emerged to overcome the manual absolute quantitation step of metabolites in one-dimensional (1D) 1H nuclear magnetic resonance (NMR) spectra. This provides more consistency between inter-laboratory comparisons. Integration of two-dimensional (2D) NMR metabolomics databases under a unified web server allowed for very accurate identification of the metabolites that have been catalogued in these databases. For the remaining uncatalogued and unknown metabolites, new cheminformatics approaches have been developed by combining NMR and mass spectrometry (MS). These hybrid MS/NMR approaches accelerated the identification of unknowns in untargeted studies, and now they are allowing for profiling ever larger number of metabolites in application studies.

118 citations

Journal ArticleDOI
TL;DR: In this paper, the authors determined the bond dissociation energies of Na+[O(CH3)2]x, x = 1−4; Na+ [(CH2OCH3), x = 0 and 298 K, respectively, by analyzing the thresholds for collision-induced dissociation of the cation−ether complexes by xenon measured using guided ion beam mass spectrometry.
Abstract: Bond dissociation energies of Na+[O(CH3)2]x, x = 1−4; Na+[(CH2OCH3)2]x, x = 1 and 2; and Na+[c-(C2H4O)4] are reported The bond dissociation energies are determined experimentally by analysis of the thresholds for collision-induced dissociation of the cation−ether complexes by xenon measured using guided ion beam mass spectrometry In all cases, the primary and lowest energy dissociation channel observed experimentally is endothermic loss of one ligand molecule The cross section thresholds are interpreted to yield 0 and 298 K bond dissociation energies after accounting for the effects of multiple ion−molecule collisions, internal energy of the complexes, and unimolecular decay rates Trends in the bond dissociation energies determined by experiment and recent theoretical ab initio calculations are in good agreement Our best experimental values, which have an average uncertainty of ±7 kJ/mol, are lower than the theoretical values by 7 ± 5 kJ/mol per metal−oxygen interaction These values are compared wit

118 citations

Journal ArticleDOI
TL;DR: A strategy for comparative proteome analyses of human plasma, which is applicable to biomarker identifications for various disease states is described, with 32 proteins observed to be significantly increased in concentration following LPS administration.
Abstract: There is significant interest in characterization of the human plasma proteome due to its potential for providing biomarkers applicable to clinical diagnosis and treatment and for gaining a better understanding of human diseases. We describe here a strategy for comparative proteome analyses of human plasma, which is applicable to biomarker identifications for various disease states. Multidimensional liquid chromatography-mass spectrometry (LC-MS/MS) has been applied to make comparative proteome analyses of plasma samples from an individual prior to and 9 h after lipopolysaccharide (LPS) administration. Peptide peak areas and the number of peptide identifications for each protein were used to evaluate the reproducibility of LC-MS/MS and to compare relative changes in protein concentration between the samples following LPS treatment. A total of 804 distinct plasma proteins (not including immunoglobulins) were confidently identified with 32 proteins observed to be significantly increased in concentration following LPS administration, including several known inflammatory response or acute-phase mediators such as C-reactive protein, serum amyloid A and A2, LPS-binding protein, LPS-responsive and beige-like anchor protein, hepatocyte growth factor activator, and von Willebrand factor, and thus, constituting potential biomarkers for inflammatory response.

117 citations

Journal ArticleDOI
TL;DR: In this article, single-molecule chemical reaction kinetics are demonstrated for interfacial electron transfer from excited cresyl violet molecules to the conduction band of indium tin oxide (ITO) or energetically accessible surface electronic states under ambient conditions by using a far field fluorescence microscope.
Abstract: Measurements of single-molecule chemical reaction kinetics are demonstrated for interfacial electron transfer from excited cresyl violet molecules to the conduction band of indium tin oxide (ITO) or energetically accessible surface electronic states under ambient conditions by using a far-field fluorescence microscope. In this system, each single molecule exhibits a single-exponential electron transfer kinetics. A wide distribution of sitespecific electron transfer rates is observed for many single cresyl violet molecules examined. This work reveals that the physical origin of multiexponential kinetics of electron transfer in this system is the inhomogeneity of molecular interactions on the semiconductor surface of ITO. We illustrate that the singlemolecule experiments provide detailed information not obtainable from experiments conducted on large ensembles of molecules. Single-molecule kinetics is particularly useful in understanding multiexponential behavior of chemical reactions in heterogeneous systems.

117 citations

Journal ArticleDOI
TL;DR: In this article, Humic-like substances (HULIS), the hydrophobic part of water-soluble organic carbon (WSOC), account for a significant fraction of PM2.5 mass, while residual oil combustion related to shipping was identified as a significant source of HULIS.
Abstract: . Humic-like substances (HULIS), the hydrophobic part of water-soluble organic carbon (WSOC), account for a significant fraction of PM2.5 mass. Their source studies are so far largely qualitative. In this study, HULIS and WSOC were determined in 100 PM2.5 samples collected in 2009 at an urban site (Guangzhou) and a suburban site (Nansha) in the Pearl River Delta in South China. The annual average concentration of HULIS was 4.83 and 4.71 μg m−3, constituting 8.5 and 10.2% of the PM2.5 mass, while HULIS-C (the carbon component of HULIS) contributed 48 and 57% of WSOC at the two sites, respectively. HULIS were found to correlate with biomass burning (BB) tracers (i.e., levoglucosan and K) and secondary species (e.g., SO42− and NH4+), suggesting its association with BB emissions and secondary formation processes. Sources of HULIS were investigated using positive matrix factorization analysis of PM2.5 chemical composition data, including major components and source markers. In addition to secondary formation process and BB emissions, residual oil combustion related to shipping was identified for the first time as a significant source of HULIS. Secondary formation process contributed the most, accounting for 49–82% of ambient HULIS at the two sites in different seasons. BB emissions contributed a seasonal average of 8–28%, with more contributions observed in the winter months (November–February) due to crop residue burning during harvest season. Residual oil combustion was revealed to be an important source at the suburban site in summer (44% of HULIS-C) due to its proximity to one of the ports and the shipping lane in the region. Vehicle emissions were found to contribute little to HULIS, but had contributions to the hydrophilic WSOC fraction. The contrast in contributions from different combustion sources to HULIS and hydrophilic WSOC suggests that primary sources of HULIS are linked to inefficient combustion. This source analysis suggests further study of HULIS be focused on secondary formation process and source characteristics of HULIS from BB and residual oil combustion.

117 citations


Authors

Showing all 1477 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Yi Cui2201015199725
Donald G. Truhlar1651518157965
Ronald W. Davis155644151276
Richard D. Smith140118079758
Yuehe Lin11864155399
Robert C. Haddon11257752712
Lai-Sheng Wang10357636212
Mark H. Engelhard10354539864
Alex Guenther10044745476
Gordon E. Brown10045432152
X. Sunney Xie9822544104
Jun Li9863140958
Richard A. Friesner9736752729
Chongmin Wang9545133983
Network Information
Related Institutions (5)
Oak Ridge National Laboratory
73.7K papers, 2.6M citations

92% related

Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

91% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202219
2021149
2020212
2019178
2018198