scispace - formally typeset
Search or ask a question
Institution

Environmental Molecular Sciences Laboratory

FacilityRichland, Washington, United States
About: Environmental Molecular Sciences Laboratory is a facility organization based out in Richland, Washington, United States. It is known for research contribution in the topics: Mass spectrometry & Ion. The organization has 1471 authors who have published 3010 publications receiving 169961 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that high-resolution differential ion mobility spectrometry (FAIMS) employing helium-rich gases can readily separate phosphopeptides with variant modification sites, and anticipate FAIMS capabilities for such separations to extend to other PTMs.
Abstract: Many proteins and proteolytic peptides incorporate the same post-translational modification (PTM) at different sites, creating multiple localization variants with different functions or activities that may coexist in cells. Current analytical methods based on liquid chromatography (LC) followed by tandem mass spectrometry (MS/MS) are challenged by such isomers that often coelute in LC and/or produce nonunique fragment ions. The application of ion mobility spectrometry (IMS) was explored, but success has been limited by insufficient resolution. We show that high-resolution differential ion mobility spectrometry (FAIMS) employing helium-rich gases can readily separate phosphopeptides with variant modification sites. Use of He/N(2) mixtures containing up to 74% He has allowed separating to >95% three monophosphorylated peptides of identical sequence. Similar separation was achieved at 50% He, using an elevated electric field. Bisphosphorylated isomers that differ in only one modification site were separated to the same extent. We anticipate FAIMS capabilities for such separations to extend to other PTMs.

82 citations

Journal ArticleDOI
TL;DR: Selectivity patterns for the sorption of organic vapors from the gas phase into cavitand monolayers on acoustic wave sensors are very similar to those seen for sorption by amorphous polymers, demonstrating that the vapor/cavitand selectivity patterns are determined primarily by solubility interactions.
Abstract: Selectivity patterns for the sorption of organic vapors from the gas phase into cavitand monolayers on acoustic wave sensors are very similar to those seen for sorption of the same vapors by amorphous polymers, demonstrating that the vapor/cavitand selectivity patterns are determined primarily by solubility interactions. The amorphous polymers serve as controls demonstrating that the three-dimensional structure of a cavitand layer is not primarily responsible for the selectivity observed. Binding and selectivity in the examples cited are governed primarily by general dispersion interactions and not by specific oriented interactions that could lead to molecular recognition.

82 citations

Journal ArticleDOI
01 Jun 2018-Small
TL;DR: A binary metal oxide prototype, denoted as nonhierarchical heterostructured Fe2 O3 /Mn 2 O3 porous hollow spheres, is proposed through a one-pot self-assembly method, leading to the enhanced structural stability and boosted reaction kinetics.
Abstract: High capacity transition-metal oxides play significant roles as battery anodes benefiting from their tunable redox chemistry, low cost, and environmental friendliness. However, the application of these conversion-type electrodes is hampered by inherent large volume variation and poor kinetics. Here, a binary metal oxide prototype, denoted as nonhierarchical heterostructured Fe2 O3 /Mn2 O3 porous hollow spheres, is proposed through a one-pot self-assembly method. Beyond conventional heteromaterial, Fe2 O3 /Mn2 O3 based on the interface of (104)Fe2O3 and (222)Mn2O3 exhibits the nonhierarchical configuration, where nanosized building blocks are integrated into microsized spheres, leading to the enhanced structural stability and boosted reaction kinetics. With this design, the Fe2 O3 /Mn2 O3 anode shows a high reversible capacity of 1075 mA h g-1 at 0.5 A g-1 , an outstanding rate capability of 638 mA h g-1 at 8 A g-1 , and an excellent cyclability with a capacity retention of 89.3% after 600 cycles.

82 citations

Journal ArticleDOI
TL;DR: In this article, a coupled Monte Carlo-molecular dynamics simulation-guided experimental approach of improving the resistance to thermally induced grain coarsening in light-weight nanocrystalline Al-Mg alloys is presented.

82 citations

Journal ArticleDOI
TL;DR: A new anode protection mechanism is reported in which, upon changing of the cell potential, the electrolyte components at the electrode-electrolyte interface reorganize reversibly to form a transient protective surface layers on the anode.
Abstract: Li-ion batteries (LIB) have been successfully commercialized after the identification of ethylene-carbonate (EC)-containing electrolyte that can form a stable solid electrolyte interphase (SEI) on carbon anode surface to passivate further side reactions but still enable the transportation of the Li+ cation. These electrolytes are still utilized, with only minor changes, after three decades. However, the long-term cycling of LIB leads to continuous consumption of electrolyte and growth of SEI layer on the electrode surface, which limits the battery’s life and performance. Herein, a new anode protection mechanism is reported in which, upon changing of the cell potential, the electrolyte components at the electrode–electrolyte interface reorganize reversibly to form a transient protective surface layers on the anode. This layer will disappear after the applied potential is removed so that no permanent SEI layer is required to protect the carbon anode. This phenomenon minimizes the need for a permanent SEI la...

82 citations


Authors

Showing all 1477 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Yi Cui2201015199725
Donald G. Truhlar1651518157965
Ronald W. Davis155644151276
Richard D. Smith140118079758
Yuehe Lin11864155399
Robert C. Haddon11257752712
Lai-Sheng Wang10357636212
Mark H. Engelhard10354539864
Alex Guenther10044745476
Gordon E. Brown10045432152
X. Sunney Xie9822544104
Jun Li9863140958
Richard A. Friesner9736752729
Chongmin Wang9545133983
Network Information
Related Institutions (5)
Oak Ridge National Laboratory
73.7K papers, 2.6M citations

92% related

Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

91% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202219
2021149
2020212
2019178
2018198