scispace - formally typeset
Search or ask a question
Institution

Environmental Molecular Sciences Laboratory

FacilityRichland, Washington, United States
About: Environmental Molecular Sciences Laboratory is a facility organization based out in Richland, Washington, United States. It is known for research contribution in the topics: Mass spectrometry & Ion. The organization has 1471 authors who have published 3010 publications receiving 169961 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: EPS secreted by suspended cultures of microorganisms from an activated sludge plant in the presence of glucose were characterized in detail using colorimetry, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) Spectroscopy.

379 citations

Journal ArticleDOI
05 Mar 1999-Science
TL;DR: The morphology of amorphous solid water grown by vapor deposition was found to depend strongly on the angular distribution of the water molecules incident from the gas phase, and the ability to control its properties in the laboratory may shed light on some of the outstanding conflicts related to this important material.
Abstract: The morphology of amorphous solid water grown by vapor deposition was found to depend strongly on the angular distribution of the water molecules incident from the gas phase. Systematic variation of the incident angle during deposition using a collimated beam of water led to the growth of nonporous to highly porous amorphous solid water. The physical and chemical properties of amorphous solid water are of interest because of its presence in astrophysical environments. The ability to control its properties in the laboratory may shed light on some of the outstanding conflicts related to this important material.

379 citations

Journal ArticleDOI
23 Oct 2012-ACS Nano
TL;DR: The results indicate that in situ electron microscopy data can be interpreted by classical models and that systematic dose experiments should be performed for all future in situ liquid studies to confirm the exact mechanisms underlying observations of nucleation and growth.
Abstract: Although nanocrystal morphology is controllable using conventional colloidal synthesis, multiple characterization techniques are typically needed to determine key properties like the nucleation rate, induction time, growth rate, and the resulting morphology. Recently, researchers have demonstrated growth of nanocrystals by in situ electron beam reduction, offering direct observations of single nanocrystals and eliminating the need for multiple characterization techniques; however, they found nanocrystal morphologies consistent with two different growth mechanisms for the same electron beam parameters. Here we show that the electron beam current plays a role analogous to the concentration of reducing agent in conventional synthesis, by controlling the growth mechanism and final morphology of silver nanocrystals grown via in situ electron beam reduction. We demonstrate that low beam currents encourage reaction limited growth that yield nanocrystals with faceted structures, while higher beam currents encoura...

375 citations

Journal ArticleDOI
TL;DR: This study presents ab initio molecular dynamics simulations of an unprecedented dynamic single-atom catalytic mechanism for the oxidation of carbon monoxide by ceria-supported gold clusters and highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in catalysis.
Abstract: Computational investigation of heterogeneous catalytic systems is fundamentally important. Here, the authors show that, under reaction conditions, reactant-induced structural changes in ceria-supported gold nanoparticle catalysts lead to the dynamic formation of single-atom catalytic sites at the interface.

362 citations

Journal ArticleDOI
TL;DR: In this article, the interaction of water and methanol with well-defined (1 × 1) terminated surfaces of anatase-TiO2(101) was investigated with temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS).
Abstract: The interaction of water and methanol with well-defined (1 × 1) terminated surfaces of anatase-TiO2(101) were investigated with temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). For water, three desorption states were observed in the TPD spectra at 160, 190, and 250 K. The three desorption peaks were assigned to multilayer water, water adsorbed to 2-fold-coordinated O, and water adsorbed to 5-fold-coordinated Ti, respectively. The TPD spectra for methanol were more complicated. For methanol, five desorption peaks were observed in the TPD spectra at 135, 170, 260, 410, and 610 K. The five desorption peaks were assigned to multilayer methanol, methanol adsorbed to 2-fold-coordinated O, methanol adsorbed to 5-fold-coordinated Ti, methoxy adsorbed to 5-fold-coordinated Ti, and methoxy adsorbed to Ti at step edges, respectively. The XPS results indicated that the adsorbed water and methanol were predominantly bound to the surface in a molecular state, with no evidence for diss...

359 citations


Authors

Showing all 1477 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Yi Cui2201015199725
Donald G. Truhlar1651518157965
Ronald W. Davis155644151276
Richard D. Smith140118079758
Yuehe Lin11864155399
Robert C. Haddon11257752712
Lai-Sheng Wang10357636212
Mark H. Engelhard10354539864
Alex Guenther10044745476
Gordon E. Brown10045432152
X. Sunney Xie9822544104
Jun Li9863140958
Richard A. Friesner9736752729
Chongmin Wang9545133983
Network Information
Related Institutions (5)
Oak Ridge National Laboratory
73.7K papers, 2.6M citations

92% related

Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

91% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202219
2021149
2020212
2019178
2018198