scispace - formally typeset
Search or ask a question
Institution

Environmental Molecular Sciences Laboratory

FacilityRichland, Washington, United States
About: Environmental Molecular Sciences Laboratory is a facility organization based out in Richland, Washington, United States. It is known for research contribution in the topics: Mass spectrometry & Ion. The organization has 1471 authors who have published 3010 publications receiving 169961 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An improved stable-isotope labeling method using a phosphoprotein isotope-coded solid-phase tag (PhIST) for isolating and measuring the relative abundances of phosphorylated peptides from complex peptide mixtures resulting from the enzymatic digestion of extracted proteins.
Abstract: Many cellular processes are regulated by reversible protein phosphorylation, and the ability to broadly identify and quantify phosphoproteins from proteomes would provide a basis for gaining a better understanding of these dynamic cellular processes. However, such a sensitive, efficient, and global method capable of addressing the phosphoproteome has yet to be developed. Here we describe an improved stable-isotope labeling method using a phosphoprotein isotope-coded solid-phase tag (PhIST) for isolating and measuring the relative abundances of phosphorylated peptides from complex peptide mixtures resulting from the enzymatic digestion of extracted proteins. The PhIST approach is an extension of the previously reported phosphoprotein isotope-coded affinity tag (PhIAT) approach developed by our laboratory,1,2 where phosphoseryl and phosphothreonyl residues were derivatized by hydroxide ion-mediated β-elimination followed by the Michael addition of 1,2-ethanedithiol (EDT). Instead of using the biotin affinit...

125 citations

Journal ArticleDOI
TL;DR: The shift of charge states of oligonucleotide negative ions formed in electrospray ionization mass spectrometry to higher mass-to-charge ratio has been accomplished by addition of organic acids and bases to the solution as mentioned in this paper.

125 citations

Journal ArticleDOI
TL;DR: To ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced.
Abstract: Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent ability to survive in extreme environments. To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC–MS analysis was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis was carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least twofold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis, assembly, etc. GC–MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the β-ketoadipate pathway. The study provides an important basis for lignin degradation by bacteria.

124 citations

Journal ArticleDOI
TL;DR: In this paper, the electronic structure of magnetite (100) and (111) surfaces was examined after reaction with water vapor (p(H2O) ranging from 10−9 to 9ÕTorr) and liquid water at 298ÕK using chemical shifts in the O 1s core level photoelectron spectra obtained with a synchrotron radiation source.

124 citations

Journal ArticleDOI
TL;DR: In this article, the interplay between the ion−water and water−water interactions in determining the structures of halide ion-water clusters using infrared spectroscopy, interpreted with ab initio theory, was elucidated.
Abstract: We elucidate the interplay between the ion−water and water−water interactions in determining the structures of halide ion−water clusters using infrared spectroscopy, interpreted with ab initio theory. Vibrational predissociation spectra of the X-·(H2O)2·Arm (X = F, Cl, Br, I) clusters in the OH stretching region (2300−3800 cm-1) reveal a strongly halide-dependent pattern of bands. These spectra encode the incremental weakening of the interaction between the water molecules with the lighter halides, finally leading to their complete dissociation in the fluoride complex. A consequence of this is that the F-·(H2O)2 cluster is likely to be a floppy system with high amplitude zero point motion, in contrast to the pseudo-rigid behavior of the other halide hydrates.

124 citations


Authors

Showing all 1477 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Yi Cui2201015199725
Donald G. Truhlar1651518157965
Ronald W. Davis155644151276
Richard D. Smith140118079758
Yuehe Lin11864155399
Robert C. Haddon11257752712
Lai-Sheng Wang10357636212
Mark H. Engelhard10354539864
Alex Guenther10044745476
Gordon E. Brown10045432152
X. Sunney Xie9822544104
Jun Li9863140958
Richard A. Friesner9736752729
Chongmin Wang9545133983
Network Information
Related Institutions (5)
Oak Ridge National Laboratory
73.7K papers, 2.6M citations

92% related

Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

91% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202219
2021149
2020212
2019178
2018198