scispace - formally typeset
Search or ask a question
Institution

Fraunhofer Society

GovernmentMunich, Germany
About: Fraunhofer Society is a government organization based out in Munich, Germany. It is known for research contribution in the topics: Laser & Silicon. The organization has 24736 authors who have published 40168 publications receiving 820894 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: By combining the techniques of optical TDM with polarisation multiplexing and DQPSK modulation format, 240 km transmission of 1.28 Tbit/s and 160 km transmission was performed in a single wavelength channel as mentioned in this paper.
Abstract: By combining the techniques of optical TDM with polarisation multiplexing and DQPSK modulation format, 240 km transmission of 1.28 Tbit/s and 160 km transmission of 2.56 Tbit/s has been performed in a single wavelength channel.

161 citations

Journal ArticleDOI
TL;DR: In this paper, the structural durability of welded structures is determined by the interaction of different influencing parameters such as loading mode, spectrum shape, residual stresses and weld geometry among others.

161 citations

01 Jan 2004
TL;DR: This paper describes the shot boundary detection and determination system developed at the Fraunhofer Institute for Telecommunications, Heinrich-HertzInstitut, used for the evaluation at TRECVID 2004 and has proved to have a very good detection performance.
Abstract: This paper describes the shot boundary detection and determination system developed at the Fraunhofer Institute for Telecommunications, Heinrich-HertzInstitut, used for the evaluation at TRECVID 2004. The system detects and determines the position of hard cuts, dissolves, fades, and wipes. It is very fast and has proved to have a very good detection performance. As input for our system, we use luminance pixel values of sub-sampled video data. The hard cut detector uses pixel and edge differences with an adaptive thresholding scheme. Flash detection and slow motion detection lower the false positive rate. Dissolve and fade detection is done with edge energy statistics, pixel and histogram differences, and a linearity measure. Wipe detection works with an evenness factor and double Hough transform. The difference between the submitted runs is basically only different threshold settings in the detectors, resulting in different recall and precision values.

161 citations

Journal ArticleDOI
TL;DR: It is found that due to microsegregation, retained austenite exists in the as-LMD- and as-SLM-produced states but not in the conventionally-produced material, and in the peak-aged state, the hardness of SLM- and LMD- produced material is slightly lower than in conventionally -produced material due to the presence of retainedAustenite and reversed Austenite formed during ageing.
Abstract: Maraging steels are used to produce tools by Additive Manufacturing (AM) methods such as Laser Metal Deposition (LMD) and Selective Laser Melting (SLM). Although it is well established that dense parts can be produced by AM, the influence of the AM process on the microstructure—in particular the content of retained and reversed austenite as well as the nanostructure, especially the precipitate density and chemistry, are not yet explored. Here, we study these features using microhardness measurements, Optical Microscopy, Electron Backscatter Diffraction (EBSD), Energy Dispersive Spectroscopy (EDS), and Atom Probe Tomography (APT) in the as-produced state and during ageing heat treatment. We find that due to microsegregation, retained austenite exists in the as-LMD- and as-SLM-produced states but not in the conventionally-produced material. The hardness in the as-LMD-produced state is higher than in the conventionally and SLM-produced materials, however, not in the uppermost layers. By APT, it is confirmed that this is due to early stages of precipitation induced by the cyclic re-heating upon further deposition—i.e., the intrinsic heat treatment associated with LMD. In the peak-aged state, which is reached after a similar time in all materials, the hardness of SLM- and LMD-produced material is slightly lower than in conventionally-produced material due to the presence of retained austenite and reversed austenite formed during ageing.

161 citations

Journal ArticleDOI
TL;DR: A standardised evaluation benchmarking framework for algorithms segmenting fibrosis and scar from LGE CMR images is presented and it is concluded that currently no algorithm is deemed clearly better than others.
Abstract: Background Late Gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging can be used to visualise regions of fibrosis and scarring in the left atrium (LA) myocardium. This can be important for treatment stratification of patients with atrial fibrillation (AF) and for assessment of treatment after radio frequency catheter ablation (RFCA). In this paper we present a standardised evaluation benchmarking framework for algorithms segmenting fibrosis and scar from LGE CMR images. The algorithms reported are the response to an open challenge that was put to the medical imaging community through an ISBI (IEEE International Symposium on Biomedical Imaging) workshop.

161 citations


Authors

Showing all 24741 results

NameH-indexPapersCitations
Christian Gieger157617113657
J. Fraser Stoddart147123996083
Klaus-Robert Müller12976479391
Ron Kikinis12668463398
Thomas Schwarz12370154560
Alexander J. Smola122434110222
Yang Li117131963111
Paul Turner114109961390
Wil M. P. van der Aalst10872542429
Ivan Dikic10735952088
Peter F. Stadler10390156813
Ralph Müller10267740888
Stefan Kaskel10170536201
Andreas Tünnermann97173843757
Wenjun Zhang9697638530
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

RWTH Aachen University
96.2K papers, 2.5M citations

93% related

Technical University of Denmark
66.3K papers, 2.4M citations

92% related

Georgia Institute of Technology
119K papers, 4.6M citations

92% related

Delft University of Technology
94.4K papers, 2.7M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202271
20212,932
20202,901
20192,802
20182,390