scispace - formally typeset
Search or ask a question
Institution

Fraunhofer Society

GovernmentMunich, Germany
About: Fraunhofer Society is a government organization based out in Munich, Germany. It is known for research contribution in the topics: Laser & Silicon. The organization has 24736 authors who have published 40168 publications receiving 820894 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In dental patients who are sensitive to Pd, restorations using Pd-containing materials should not be used although Pd has been used without allergic effects in some of these individuals, and those patients who have an allergy to nickel should be informed that use of PD-containing dental materials may cause Pd allergy, though this risk appears to be low.

388 citations

Journal ArticleDOI
TL;DR: The screening of exciting rice cultivars and breeding of new cultivars with low exudation rates could offer an important option for mitigation of CH4 emission from rice agriculture to the atmosphere.
Abstract: Plant root exudates play important roles in the rhizosphere. We tested three media (nutrient solution, deionized water and CaSO4 solution) for three periods of time (2, 4 and 6 h) for collecting root exudates of soil-grown rice plants. Nutrient culture solution created complications in the analyses of exudates for total organic C (TOC) by the wet digestion method and of organic acids by HPLC due to the interference by its components. Deionized water excluded such interference in analytical analyses but affected the turgor of root cells; roots of four widely different rice cultivars excreted 20 to 60 % more TOC in deionized water than in 0.01 M CaSO4. Furthermore, the proportion of carbohydrates in TOC was also enhanced. Calcium sulfate solution maintained the osmotic environment for root cells and did not interfere in analytical procedures. Collection for 2 h avoided under-estimation of TOC and its components exuded by rice roots, which occurred during prolonged exposure. By placing plants in 0.01 M CaSO4 for 2 h, root exudates of soil-grown traditional, tall rice cultivars (Dular, B40 and Intan), high-yielding dwarf cultivars (IR72, IR52, IR64 and PSBRc 20), new plant type cultivars (IR65598 and IR65600) and a hybrid (Magat) were collected at seedling, panicle initiation, flowering and maturity and characterized for TOC and organic acids. The exudation rates were, in general, lowest at seedling stage, increased until flowering but decreased at maturity. Among organic acids, malic acid showed the highest concentration followed by tartaric, succinic, citric and lactic acids. With advancing plant growth, exudation of organic acids substituted exudation of sugars. Root and shoot biomass were positively correlated with carbon exudation suggesting that it is driven by plant biomass. As root exudates provide substrates for methanogenesis in rice fields, large variations in root exudation by cultivars and at different growth stages could greatly influence CH4 emissions. Therefore, the use of high-yielding cultivars with lowest root excretions, for example IR65598 and IR65600, would mediate low exudate-induced CH4 production. The screening of exciting rice cultivars and breeding of new cultivars with low exudation rates could offer an important option for mitigation of CH4 emission from rice agriculture to the atmosphere.

388 citations

Journal ArticleDOI
TL;DR: In this article, the first thermoelectric devices based on the V-VI-compounds Bi/sub 2/Te/sub 3/ and (Bi,Sb) were described.
Abstract: This work describes the first thermoelectric devices based on the V-VI-compounds Bi/sub 2/Te/sub 3/ and (Bi,Sb)/sub 2/Te/sub 3/ which can be manufactured by means of regular thin film technology in combination with microsystem technology. Fabrication concept, material deposition for some 10-μm-thick layers and the properties of the deposited thermoelectric materials will be reported. First device properties for Peltier-coolers and thermogenerators will be shown as well as investigations on long term and cycling stability. Data on metal/semiconductor contact resistance were extracted form device data. Device characteristics like response time for a Peltier-cooler and power output for a thermogenerator will be compared to commercial devices.

387 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed and discussed several empirical data sets from Germany, characterising this user group from both a user and a product perspective, i.e. who is willing to buy an EV and who should buy one.
Abstract: Electric vehicles (EVs) have noteworthy potential to reduce global and local emissions and are expected to become a relevant future market for vehicle sales. Both policy makers and car manufacturers have an interest to understand the first large EV user group, frequently referred to as ‘early adopters’. However, there are only a few empirical results available for this important group. In this paper, we analyse and discuss several empirical data sets from Germany, characterising this user group from both a user and a product perspective, i.e. who is willing to buy an EV and who should buy one. Our results show that the most likely group of private EV buyers in Germany are middle-aged men with technical professions living in rural or suburban multi-person households. They own a large share of vehicles in general, are more likely to profit from the economical benefits of these vehicles due to their annual vehicle kilometres travelled and the share of inner-city driving. They state a higher willingness to buy electric vehicles than other potential adopter groups and their higher socio-economic status allows them to purchase EVs. In contrast to this, inhabitants of major cities are less likely to buy EVs since they form a small group of car owners in general, their mileage is too low for EVs to pay off economically and they state lower interest and lower willingness to pay for EVs than other groups. Our results indicate that transport policy promoting EVs should focus on middle-aged men with families from rural and sub-urban cities as first private EV buyers.

386 citations

Journal ArticleDOI
28 May 2021-Science
TL;DR: In this article, a holistic concept of material-structure-performance integrated additive manufacturing (MSPI-AM) is proposed to cope with the extensive challenges of laser-based additive manufacturing.
Abstract: BACKGROUND Metallic components are the cornerstone of modern industries such as aviation, aerospace, automobile manufacturing, and energy production. The stringent requirements for high-performance metallic components impede the optimization of materials selection and manufacturing. Laser-based additive manufacturing (AM) is a key strategic technology for technological innovation and industrial sustainability. As the number of applications increases, so do the scientific and technological challenges. Because laser AM has domain-by-domain (e.g., point-by-point, line-by-line, and layer-by-layer) localized forming characteristics, the requisite for printing process and performance control encompasses more than six orders of magnitude, from the microstructure (nanometer- to micrometer-scale) to macroscale structure and performance of components (millimeter- to meter-scale). The traditional route of laser-metal AM follows a typical “series mode” from design to build, resulting in a cumbersome trial-and-error methodology that creates challenges for obtaining high-performance goals. ADVANCES We propose a holistic concept of material-structure-performance integrated additive manufacturing (MSPI-AM) to cope with the extensive challenges of AM. We define MSPI-AM as a one-step AM production of an integral metallic component by integrating multimaterial layout and innovative structures, with an aim to proactively achieve the designed high performance and multifunctionality. Driven by the performance or function to be realized, the MSPI-AM methodology enables the design of multiple materials, new structures, and corresponding printing processes in parallel and emphasizes their mutual compatibility, providing a systematic solution to the existing challenges for laser-metal AM. MSPI-AM is defined by two methodological ideas: “the right materials printed in the right positions” and “unique structures printed for unique functions.” The increasingly creative methods for engineering both micro- and macrostructures within single printed components have led to the use of AM to produce more complicated structures with multimaterials. It is now feasible to design and print multimaterial components with spatially varying microstructures and properties (e.g., nanocomposites, in situ composites, and gradient materials), further enabling the integration of functional structures with electronics within the volume of a laser-printed monolithic part. These complicated structures (e.g., integral topology optimization structures, biomimetic structures learned from nature, and multiscale hierarchical lattice or cellular structures) have led to breakthroughs in both mechanical performance and physical/chemical functionality. Proactive realization of high performance and multifunctionality requires cross-scale coordination mechanisms (i.e., from the nano/microscale to the macroscale). OUTLOOK Our MSPI-AM continues to develop into a practical methodology that contributes to the high performance and multifunctionality goals of AM. Many opportunities exist to enhance MSPI-AM. MSPI-AM relies on a more digitized material and structure development and printing, which could be accomplished by considering different paradigms for AM materials discovery with the Materials Genome Initiative, standardization of formats for digitizing materials and structures to accelerate data aggregation, and a systematic printability database to enhance autonomous decision-making of printers. MSPI-oriented AM becomes more intelligent in processes and production, with the integration of intelligent detection, sensing and monitoring, big-data statistics and analytics, machine learning, and digital twins. MSPI-AM further calls for more hybrid approaches to yield the final high-performance/multifunctional achievements, with more versatile materials selection and more comprehensive integration of virtual manufacturing and real production to navigate more complex printing. We hope that MSPI-AM can become a key strategy for the sustainable development of AM technologies. Download high-res image Open in new tab Download Powerpoint Material-structure-performance integrated additive manufacturing (MSPI-AM). Versatile designed materials and innovative structures are simultaneously printed within an integral metallic component to yield high performance and multifunctionality, integrating in parallel the core elements of material, structure, process, and performance and a large number of related coupling elements and future potential elements to enhance the multifunctionality of printed components and the maturity and sustainability of laser AM technologies.

386 citations


Authors

Showing all 24741 results

NameH-indexPapersCitations
Christian Gieger157617113657
J. Fraser Stoddart147123996083
Klaus-Robert Müller12976479391
Ron Kikinis12668463398
Thomas Schwarz12370154560
Alexander J. Smola122434110222
Yang Li117131963111
Paul Turner114109961390
Wil M. P. van der Aalst10872542429
Ivan Dikic10735952088
Peter F. Stadler10390156813
Ralph Müller10267740888
Stefan Kaskel10170536201
Andreas Tünnermann97173843757
Wenjun Zhang9697638530
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

RWTH Aachen University
96.2K papers, 2.5M citations

93% related

Technical University of Denmark
66.3K papers, 2.4M citations

92% related

Georgia Institute of Technology
119K papers, 4.6M citations

92% related

Delft University of Technology
94.4K papers, 2.7M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202271
20212,932
20202,901
20192,802
20182,390