scispace - formally typeset
Search or ask a question
Institution

Goddard Space Flight Center

FacilityGreenbelt, Maryland, United States
About: Goddard Space Flight Center is a facility organization based out in Greenbelt, Maryland, United States. It is known for research contribution in the topics: Galaxy & Solar wind. The organization has 19058 authors who have published 63344 publications receiving 2786037 citations. The organization is also known as: GSFC & Space Flight Center.
Topics: Galaxy, Solar wind, Magnetosphere, Stars, Population


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors evaluate the tropical intraseasonal variability, especially the fidelity of Madden-Julian oscillation (MJO) simulations, in 14 coupled general circulation models participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4).
Abstract: This study evaluates the tropical intraseasonal variability, especially the fidelity of Madden–Julian oscillation (MJO) simulations, in 14 coupled general circulation models (GCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Eight years of daily precipitation from each model’s twentieth-century climate simulation are analyzed and compared with daily satellite-retrieved precipitation. Space–time spectral analysis is used to obtain the variance and phase speed of dominant convectively coupled equatorial waves, including the MJO, Kelvin, equatorial Rossby (ER), mixed Rossby–gravity (MRG), and eastward inertio–gravity (EIG) and westward inertio–gravity (WIG) waves. The variance and propagation of the MJO, defined as the eastward wavenumbers 1–6, 30–70-day mode, are examined in detail. The results show that current state-of-the-art GCMs still have significant problems and display a wide range of skill in simulating the tropical intraseasonal va...

767 citations

Journal ArticleDOI
TL;DR: Giovanni, the Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization and Analysis Infrastructure, has provided researchers with advanced capabilities to perform data exploration and analysis with observational data from NASA Earth observation satellites.
Abstract: Giovanni, the Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization and Analysis Infrastructure, has provided researchers with advanced capabilities to perform data exploration and analysis with observational data from NASA Earth observation satellites. In the past 5-10 years, examining geophysical events and processes with remote-sensing data required a multistep process of data discovery, data acquisition, data management, and ultimately data analysis. Giovanni accelerates this process by enabling basic visualization and analysis directly on the World Wide Web. In the last two years, Giovanni has added new data acquisition functions and expanded analysis options to increase its usefulness to the Earth science research community.

767 citations

Journal ArticleDOI
22 May 1992-Science
TL;DR: Models and the observational network for oxidants are improving, but validation of global models is still at an early stage and positive and negative trends possible for OH and H2O2.
Abstract: A number of critical atmospheric chemical problems depend on the earth's oxidizing capacity, which is essentially the global burden of oxidants in the lower atmosphere. There is limited direct evidence for changes in the earth's oxidizing capacity since recent preindustrial times when, because of industrial and poulation growth, increasing amounts of O3 precursor trace gases (carbon monoxide, nitrogen oxides, and hydrocarbons) have been released into the atmosphere. The concentrations of O3 and possibly H2O2 have increased over large regions. Models predict that tropospheric O3 will increase about 0.3-1.0 percent per year over the next 50 years with both positive and negative trends possible for OH and H2O2. Models and the observational network for oxidants are improving, but validation of global models is still at an early stage.

764 citations

Journal ArticleDOI
TL;DR: In this article, a new generation of ultra-low-noise millimeter-wave receivers, currently being developed for astronomical observation, utilizes the extremely sharp nonlinearity produced by single-electron quasiparticle tunneling between two superconductors in a superconductor-insulator-superconductor (SIS) tunnel junction.
Abstract: Photon-assisted tunneling of electrons through an insulating barrier may be used to detect long-wavelength radiation with a sensitivity approaching the limit imposed by the Heisenberg uncertainty principle. A new generation of ultra-low-noise millimeter-wave receivers, currently being developed for astronomical observation, utilizes the extremely sharp nonlinearity produced by single-electron quasiparticle tunneling between two superconductors in a superconductor-insulator-superconductor (SIS) tunnel junction. At millimeter wavelengths, the quantum energy $\frac{\ensuremath{\hbar}\ensuremath{\omega}}{e}$ may be larger than the voltage width for onset of quasiparticle tunneling in a SIS junction; and under these conditions the absorption of a single photon can cause one additional electron to tunnel through the barrier. Several newly discovered quantum effects become possible in this regime, including power amplification of an incoming signal during the process of frequency down-conversion in a heterodyne receiver. The experimental development of SIS millimeter-wave receivers is reviewed, along with the quantum theory of mixing which predicts their performance.

763 citations

Journal ArticleDOI
TL;DR: A linear analysis of the IAU procedure shows it to have the attractive properties of a low-pass time filter, and this result is contrasted with a simple dynamical relaxation scheme, which is shown, in this linear analysis, to have less desirable response characteristics.
Abstract: The IAU (incremental analysis updating) process incorporates analysis increments into a model integration in a gradual manner. It does this by using analysis increments as constant forcings in a model's prognostic equations over a 6-h period centered on an analysis time. A linear analysis of the IAU procedure shows it to have the attractive properties of a low-pass time filter. The IAU process affects the response of the model to the analysis increments, and it leaves the model state unaffected where there were no data to assimilate. This result is contrasted with a simple dynamical relaxation (or “nudging”) scheme, which is shown, in this linear analysis, to have less desirable response characteristics, both from the analysis increments and from the background state of the model. The behavior of IAU in the context of the Goddard Earth Observing System (GEOS) Data Assimilation System is examined using a combination of large-scale diagnostics from month-long assimilations and detailed diagnostics ...

763 citations


Authors

Showing all 19247 results

NameH-indexPapersCitations
Anton M. Koekemoer1681127106796
Alexander S. Szalay166936145745
David W. Johnson1602714140778
Donald G. York160681156579
Takeo Kanade147799103237
Gillian R. Knapp145460121477
Olaf Reimer14471674359
R. A. Sunyaev141848107966
Christopher T. Russell137237897268
Hui Li1352982105903
Neil Gehrels13472780804
Christopher B. Field13340888930
Igor V. Moskalenko13254258182
William T. Reach13153590496
Adam Burrows13062355483
Network Information
Related Institutions (5)
Marshall Space Flight Center
14.5K papers, 324.4K citations

91% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

90% related

National Center for Atmospheric Research
19.7K papers, 1.4M citations

90% related

California Institute of Technology
146.6K papers, 8.6M citations

88% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023186
2022327
20211,815
20202,153
20192,210
20182,325