scispace - formally typeset
Search or ask a question
Institution

Goddard Space Flight Center

FacilityGreenbelt, Maryland, United States
About: Goddard Space Flight Center is a facility organization based out in Greenbelt, Maryland, United States. It is known for research contribution in the topics: Galaxy & Solar wind. The organization has 19058 authors who have published 63344 publications receiving 2786037 citations. The organization is also known as: GSFC & Space Flight Center.
Topics: Galaxy, Solar wind, Magnetosphere, Stars, Population


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors summarize Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) hard X-ray (HXR) and γ-ray imaging and spectroscopy observations of the intense (X4.8) γray line flare of 2002 July 23.
Abstract: We summarize Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) hard X-ray (HXR) and γ-ray imaging and spectroscopy observations of the intense (X4.8) γ-ray line flare of 2002 July 23. In the initial rise, a new type of coronal HXR source dominates that has a steep double-power-law X-ray spectrum and no evidence of thermal emission above 10 keV, indicating substantial electron acceleration to tens of keV early in the flare. In the subsequent impulsive phase, three footpoint sources with much flatter double-power-law HXR spectra appear, together with a coronal superhot (T ~ 40 MK) thermal source. The north footpoint and the coronal source both move systematically to the north-northeast at speeds up to ~50 km s-1. This footpoint's HXR flux varies approximately with its speed, consistent with magnetic reconnection models, provided the rate of electron acceleration varies with the reconnection rate. The other footpoints show similar temporal variations but do not move systematically, contrary to simple reconnection models. The γ-ray line and continuum emissions show that ions and electrons are accelerated to tens of MeV during the impulsive phase. The prompt de-excitation γ-ray lines of Fe, Mg, Si, Ne, C, and O—resolved here for the first time—show mass-dependent redshifts of 0.1%-0.8%, implying a downward motion of accelerated protons and α-particles along magnetic field lines that are tilted toward the Earth by ~40°. For the first time, the positron annihilation line is resolved, and the detailed high-resolution measurements are obtained for the neutron-capture line. The first ever solar γ-ray line and continuum imaging shows that the source locations for the relativistic electron bremsstrahlung overlap the 50-100 keV HXR sources, implying that electrons of all energies are accelerated in the same region. The centroid of the ion-produced 2.223 MeV neutron-capture line emission, however, is located ~20'' ± 6'' away, implying that the acceleration and/or propagation of the ions must differ from that of the electrons. Assuming that Coulomb collisions dominate the energetic electron and ion energy losses (thick target), we estimate that a minimum of ~2 × 1031 ergs is released in accelerated >~20 keV electrons during the rise phase, with ~1031 ergs in ions above 2.5 MeV nucleon-1 and about the same in electrons above 30 keV released in the impulsive phase. Much more energy could be in accelerated particles if their spectra extend to lower energies.

492 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a procedure for establishing a coherency of open ocean (Case-1 waters) data products, for which the various data processing methods are sufficiently similar.

491 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented new Monte Carlo calculations of Green's functions for a toroidal reprocessor that provide significant improvements over currently available models. And they used the Green's function approach to construct X-ray spectral fitting models that allow arbitrary incident spectra as part of the fitting process.
Abstract: The central engines of both type 1 and type 2 active galactic nuclei are thought to harbour a toroidal structure that absorbs and reprocesses high-energy photons from the central X-ray source. Unique features in the reprocessed spectra can provide powerful physical constraints on the geometry, column density, element abundances and orientation of the circumnuclear matter. If the reprocessor is Compton-thick, the calculation of emission-line and continuum spectra that are suitable for direct fitting to X-ray data is challenging because the reprocessed emission depends on the spectral shape of the incident continuum, which may not be directly observable. We present new Monte Carlo calculations of Green's functions for a toroidal reprocessor that provide significant improvements over currently available models. The Green's function approach enables the construction of X-ray spectral fitting models that allow arbitrary incident spectra as part of the fitting process. The calculations are fully relativistic and have been performed for column densities that cover the Compton-thin to Compton-thick regime, for incident photon energies up to 500 keV. The Green's function library can easily be extended cumulatively to provide models that are valid for higher input energies and a wider range of element abundances and opening angles of the torus. The reprocessed continuum and fluorescent line emission due to Fe Kα, Fe Kβ and Ni Kα are treated self-consistently, eliminating the need for ad hoc modelling that is currently common practice. We find that the spectral shape of the Compton-thick reflection spectrum in both the soft and hard X-ray bands in our toroidal geometry is different compared with that obtained from disc models. A key result of our study is that a Compton-thick toroidal structure that subtends the same solid angle at the X-ray source as a disc can produce a reflection spectrum that is ∼6 times weaker than that from a disc. This highlights the widespread and erroneous interpretation of the so-called ‘reflection-fraction’ as a solid angle, obtained from fitting disc-reflection models to Compton-thick sources without regard for proper consideration of geometry.

489 citations

Journal ArticleDOI
TL;DR: The Hilbert-Huang Transform (HHT) was originally developed for natural and engineering sciences and has now been applied to financial data as mentioned in this paper, where the first step is the EMD, with which any complicated data set can be decomposed into a finite and often small number of intrinsic mode functions (IMF).
Abstract: A new method, the Hilbert–Huang Transform (HHT), developed initially for natural and engineering sciences has now been applied to financial data. The HHT method is specially developed for analysing non-linear and non-stationary data. The method consists of two parts: (1) the empirical mode decomposition (EMD), and (2) the Hilbert spectral analysis. The key part of the method is the first step, the EMD, with which any complicated data set can be decomposed into a finite and often small number of intrinsic mode functions (IMF). An IMF is defined here as any function having the same number of zero-crossing and extrema, and also having symmetric envelopes defined by the local maxima, and minima respectively. The IMF also thus admits well-behaved Hilbert transforms. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to non-linear and non-stationary processes. With the Hilbert transform, the IMF yield instantaneous frequencies as functions of time that give sharp identifications of imbedded structures. The final presentation of the results is an energy–frequency–time distribution, which we designate as the Hilbert Spectrum. Comparisons with Wavelet and Fourier analyses show the new method offers much better temporal and frequency resolutions. The EMD is also useful as a filter to extract variability of different scales. In the present application, HHT has been used to examine the changeability of the market, as a measure of volatility of the market. Published in 2003 by John Wiley & Sons, Ltd.

489 citations

Journal ArticleDOI
TL;DR: This analysis predicts substantial expansion of C4 vegetation – particularly in Asia, despite cooler temperatures, which is expected to result in double the current pCO2 by sometime in the next century, with some associated climate warming.
Abstract: C4 photosynthetic physiologies exhibit fundamentally different responses to temperature and atmospheric CO2 partial pressures (pCO2) compared to the evolutionarily more primitive C3 type. All else being equal, C4 plants tend to be favored over C3 plants in warm humid climates and, conversely, C3 plants tend to be favored over C4 plants in cool climates. Empirical observations supported by a photosynthesis model predict the existence of a climatological crossover temperature above which C4 species have a carbon gain advantage and below which C3 species are favored. Model calculations and analysis of current plant distribution suggest that this pCO2-dependent crossover temperature is approximated by a mean temperature of 22°C for the warmest month at the current pCO2 (35 Pa). In addition to favorable temperatures, C4 plants require sufficient precipitation during the warm growing season. C4 plants which are predominantly graminoids of short stature can be competitively excluded by trees (nearly all C3 plants) - regardless of the photosynthetic superiority of the C4 pathway - in regions otherwise favorable for C4. To construct global maps of the distribution of C4 grasses for current, past and future climate scenarios, we make use of climatological data sets which provide estimates of the mean monthly temperature to classify the globe into areas which should favor C4 photosynthesis during at least 1 month of the year. This area is further screened by excluding areas where precipitation is <25 mm per month during the warm season and by selecting areas classified as grasslands (i.e., excluding areas dominated by woody vegetation) according to a global vegetation map. Using this approach, grasslands of the world are designated as C3, C4, and mixed under current climate and pCO2. Published floristic studies were used to test the accuracy of these predictions in many regions of the world, and agreement with observations was generally good. We then make use of this protocol to examine changes in the global abundance of C4 grasses in the past and the future using plausible estimates for the climates and pCO2. When pCO2 is lowered to pre-industrial levels, C4 grasses expanded their range into large areas now classified as C3 grasslands, especially in North America and Eurasia. During the last glacial maximum (∼18 ka BP) when the climate was cooler and pCO2 was about 20 Pa, our analysis predicts substantial expansion of C4 vegetation - particularly in Asia, despite cooler temperatures. Continued use of fossil fuels is expected to result in double the current pCO2 by sometime in the next century, with some associated climate warming. Our analysis predicts a substantial reduction in the area of C4 grasses under these conditions. These reductions from the past and into the future are based on greater stimulation of C3 photosynthetic efficiency by higher pCO2 than inhibition by higher temperatures. The predictions are testable through large-scale controlled growth studies and analysis of stable isotopes and other data from regions where large changes are predicted to have occurred.

488 citations


Authors

Showing all 19247 results

NameH-indexPapersCitations
Anton M. Koekemoer1681127106796
Alexander S. Szalay166936145745
David W. Johnson1602714140778
Donald G. York160681156579
Takeo Kanade147799103237
Gillian R. Knapp145460121477
Olaf Reimer14471674359
R. A. Sunyaev141848107966
Christopher T. Russell137237897268
Hui Li1352982105903
Neil Gehrels13472780804
Christopher B. Field13340888930
Igor V. Moskalenko13254258182
William T. Reach13153590496
Adam Burrows13062355483
Network Information
Related Institutions (5)
Marshall Space Flight Center
14.5K papers, 324.4K citations

91% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

90% related

National Center for Atmospheric Research
19.7K papers, 1.4M citations

90% related

California Institute of Technology
146.6K papers, 8.6M citations

88% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023186
2022327
20211,815
20202,153
20192,210
20182,325