scispace - formally typeset
Search or ask a question
Institution

Goddard Space Flight Center

FacilityGreenbelt, Maryland, United States
About: Goddard Space Flight Center is a facility organization based out in Greenbelt, Maryland, United States. It is known for research contribution in the topics: Galaxy & Solar wind. The organization has 19058 authors who have published 63344 publications receiving 2786037 citations. The organization is also known as: GSFC & Space Flight Center.
Topics: Galaxy, Solar wind, Magnetosphere, Stars, Population


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors presented a model of polarized foreground emission that captures the large angular scale characteristics of the microwave sky and analyzed the 3-year full-sky maps of the polarization and cosmological implications.
Abstract: The Wilkinson Microwave Anisotropy Probe (WMAP) has mapped the entire sky in five frequency bands between 23 and 94 GHz with polarization-sensitive radiometers. We present 3 year full-sky maps of the polarization and analyze them for foreground emission and cosmological implications. These observations open up a new window for understanding how the universe began and help set a foundation for future observations. WMAP observes significant levels of polarized foreground emission due to both Galactic synchrotron radiation and thermal dust emission. Synchrotron radiation is the dominant signal at l < 50 and ν 40 GHz, while thermal dust emission is evident at 94 GHz. The least contaminated channel is at 61 GHz. We present a model of polarized foreground emission that captures the large angular scale characteristics of the microwave sky. After applying a Galactic mask that cuts 25.7% of the sky, we show that the high Galactic latitude rms polarized foreground emission, averaged over l = 4-6, ranges from ≈5 μK at 22 GHz to 0.6 μK at 61 GHz. By comparison, the levels of intrinsic CMB polarization for a ΛCDM model with an optical depth of τ = 0.09 and assumed tensor-to-scalar ratio r = 0.3 are ≈0.3 μK for E-mode polarization and ≈0.1 μK for B-mode polarization. To analyze the maps for CMB polarization at l < 16, we subtract a model of the foreground emission that is based primarily on a scaling WMAP's 23 GHz map. In the foreground-corrected maps, we detect l(l + 1)C/2π = 0.086 ± 0.029 (μK)2. This is interpreted as the result of rescattering of the CMB by free electrons released during reionization at zr = 10.9 for a model with instantaneous reionization. By computing the likelihood of just the EE data as a function of τ we find τ = 0.10 ± 0.03. When the same EE data are used in the full six-parameter fit to all WMAP data (TT, TE, EE), we find τ = 0.09 ± 0.03. Marginalization over the foreground subtraction affects this value by δτ < 0.01. We see no evidence for B modes, limiting them to l(l + 1)C/2π = -0.04 ± 0.03 (μK)2. We perform a template fit to the E-mode and B-mode data with an approximate model for the tensor scalar ratio. We find that the limit from the polarization signals alone is r < 2.2 (95% CL), where r is evaluated at k = 0.002 Mpc-1. This corresponds to a limit on the cosmic density of gravitational waves of ΩGWh2 < 5 × 10-12. From the full WMAP analysis, we find r < 0.55 (95% CL) corresponding to a limit of ΩGWh2 < 1 × 10-12 (95% CL). The limit on r is approaching the upper bound of predictions for some of the simplest models of inflation, r ~ 0.3.

1,969 citations

Journal ArticleDOI
Fiona A. Harrison1, William W. Craig2, William W. Craig3, Finn Erland Christensen4, Charles J. Hailey5, William W. Zhang6, Steven E. Boggs3, Daniel Stern1, W. Rick Cook1, Karl Forster1, Paolo Giommi, Brian W. Grefenstette1, Yunjin Kim1, Takao Kitaguchi7, Jason E. Koglin5, Kristin K. Madsen1, Peter H. Mao1, Hiromasa Miyasaka1, Kaya Mori5, M. Perri8, Michael J. Pivovaroff2, Simonetta Puccetti8, Vikram Rana1, Niels Jørgen Stenfeldt Westergaard4, J. L. Willis1, Andreas Zoglauer3, Hongjun An9, Matteo Bachetti10, Matteo Bachetti11, Nicolas M. Barrière3, Eric C. Bellm1, Varun Bhalerao12, Varun Bhalerao1, Nicolai Brejnholt4, Felix Fuerst1, Carl Christian Liebe1, Craig B. Markwardt6, Melania Nynka5, Julia Vogel2, Dominic J. Walton1, Daniel R. Wik6, David M. Alexander13, L. R. Cominsky14, Ann Hornschemeier6, Allan Hornstrup4, Victoria M. Kaspi9, Greg Madejski, Giorgio Matt15, S. Molendi7, David M. Smith16, John A. Tomsick3, Marco Ajello3, David R. Ballantyne17, Mislav Baloković1, Didier Barret10, Didier Barret11, Franz E. Bauer18, Roger Blandford8, W. Niel Brandt19, Laura Brenneman20, James Chiang8, Deepto Chakrabarty21, Jérôme Chenevez4, Andrea Comastri7, Francois Dufour9, Martin Elvis20, Andrew C. Fabian22, Duncan Farrah23, Chris L. Fryer24, Eric V. Gotthelf5, Jonathan E. Grindlay20, D. J. Helfand25, Roman Krivonos3, David L. Meier1, Jon M. Miller26, Lorenzo Natalucci7, Patrick Ogle1, Eran O. Ofek27, Andrew Ptak6, Stephen P. Reynolds28, Jane R. Rigby6, Gianpiero Tagliaferri7, Stephen E. Thorsett29, Ezequiel Treister30, C. Megan Urry31 
TL;DR: The Nuclear Spectroscopic Telescope Array (NuSTAR) as discussed by the authors is the first focusing high-energy X-ray telescope in orbit, which operates in the band from 3 to 79 keV.
Abstract: The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to the peak epoch of galaxy assembly in the universe (at z ≾ 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element ^(44)Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6° inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.

1,966 citations

Journal ArticleDOI
07 Dec 2006-Nature
TL;DR: Global ocean NPP changes detected from space over the past decade are described, dominated by an initial increase in NPP of 1,930 teragrams of carbon a year, followed by a prolonged decrease averaging 190 Tg C yr-1.
Abstract: Contributing roughly half of the biosphere's net primary production (NPP), photosynthesis by oceanic phytoplankton is a vital link in the cycling of carbon between living and inorganic stocks. Each day, more than a hundred million tons of carbon in the form of CO2 are fixed into organic material by these ubiquitous, microscopic plants of the upper ocean, and each day a similar amount of organic carbon is transferred into marine ecosystems by sinking and grazing. The distribution of phytoplankton biomass and NPP is defined by the availability of light and nutrients (nitrogen, phosphate, iron). These growth-limiting factors are in turn regulated by physical processes of ocean circulation, mixed-layer dynamics, upwelling, atmospheric dust deposition, and the solar cycle. Satellite measurements of ocean colour provide a means of quantifying ocean productivity on a global scale and linking its variability to environmental factors. Here we describe global ocean NPP changes detected from space over the past decade. The period is dominated by an initial increase in NPP of 1,930 teragrams of carbon a year (Tg C yr(-1)), followed by a prolonged decrease averaging 190 Tg C yr(-1). These trends are driven by changes occurring in the expansive stratified low-latitude oceans and are tightly coupled to coincident climate variability. This link between the physical environment and ocean biology functions through changes in upper-ocean temperature and stratification, which influence the availability of nutrients for phytoplankton growth. The observed reductions in ocean productivity during the recent post-1999 warming period provide insight on how future climate change can alter marine food webs.

1,954 citations

Journal ArticleDOI
TL;DR: Astropy as mentioned in this paper provides core astronomy-related functionality to the community, including support for domain-specific file formats such as Flexible Image Transport System (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions.
Abstract: We present the first public version (v0.2) of the open-source and community-developed Python package, Astropy. This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as Flexible Image Transport System (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions. Significant functionality is under active development, such as a model fitting framework, VO client and server tools, and aperture and point spread function (PSF) photometry tools. The core development team is actively making additions and enhancements to the current code base, and we encourage anyone interested to participate in the development of future Astropy versions.

1,944 citations

Journal ArticleDOI
TL;DR: CloudSat as discussed by the authors is a satellite experiment designed to measure the vertical structure of clouds from space, and once launched, CloudSat will orbit in formation as part of a constellation of satellites (the A-Train) that includes NASA's Aqua and Aura satellites, a NASA-CNES lidar satellite (CALIPSO), and a CNES satellite carrying a polarimeter (PARASOL).
Abstract: CloudSat is a satellite experiment designed to measure the vertical structure of clouds from space. The expected launch of CloudSat is planned for 2004, and once launched, CloudSat will orbit in formation as part of a constellation of satellites (the A-Train) that includes NASA's Aqua and Aura satellites, a NASA–CNES lidar satellite (CALIPSO), and a CNES satellite carrying a polarimeter (PARASOL). A unique feature that CloudSat brings to this constellation is the ability to fly a precise orbit enabling the fields of view of the CloudSat radar to be overlapped with the CALIPSO lidar footprint and the other measurements of the constellation. The precision and near simultaneity of this overlap creates a unique multisatellite observing system for studying the atmospheric processes essential to the hydrological cycle. The vertical profiles of cloud properties provided by CloudSat on the global scale fill a critical gap in the investigation of feedback mechanisms linking clouds to climate. Measuring these profi...

1,929 citations


Authors

Showing all 19247 results

NameH-indexPapersCitations
Anton M. Koekemoer1681127106796
Alexander S. Szalay166936145745
David W. Johnson1602714140778
Donald G. York160681156579
Takeo Kanade147799103237
Gillian R. Knapp145460121477
Olaf Reimer14471674359
R. A. Sunyaev141848107966
Christopher T. Russell137237897268
Hui Li1352982105903
Neil Gehrels13472780804
Christopher B. Field13340888930
Igor V. Moskalenko13254258182
William T. Reach13153590496
Adam Burrows13062355483
Network Information
Related Institutions (5)
Marshall Space Flight Center
14.5K papers, 324.4K citations

91% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

90% related

National Center for Atmospheric Research
19.7K papers, 1.4M citations

90% related

California Institute of Technology
146.6K papers, 8.6M citations

88% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023186
2022327
20211,815
20202,153
20192,210
20182,325