scispace - formally typeset
Search or ask a question
Institution

Goddard Space Flight Center

FacilityGreenbelt, Maryland, United States
About: Goddard Space Flight Center is a facility organization based out in Greenbelt, Maryland, United States. It is known for research contribution in the topics: Galaxy & Solar wind. The organization has 19058 authors who have published 63344 publications receiving 2786037 citations. The organization is also known as: GSFC & Space Flight Center.
Topics: Galaxy, Solar wind, Magnetosphere, Stars, Population


Papers
More filters
Journal ArticleDOI
TL;DR: The International Reference Ionosphere (IRI) is the de facto international standard for the climatological specification of ionospheric parameters and as such it is currently undergoing registration as Technical Specification (TS) of the International Standardization Organization (ISO) as discussed by the authors.

1,029 citations

Journal ArticleDOI
Peter A. R. Ade1, James E. Aguirre2, Z. Ahmed3, Simone Aiola4  +276 moreInstitutions (53)
TL;DR: The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s as mentioned in this paper.
Abstract: The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping ≈ 10% of the sky to a white noise level of 2 μK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of σ(r)=0.003. The large aperture telescope will map ≈ 40% of the sky at arcminute angular resolution to an expected white noise level of 6 μK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.

1,027 citations

Journal ArticleDOI
J. Abadie1, B. P. Abbott1, R. Abbott1, M. R. Abernathy2  +719 moreInstitutions (79)
TL;DR: In this paper, Kalogera et al. presented an up-to-date summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo.
Abstract: We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters and are still uncertain. The most confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our galaxy. These yield a likely coalescence rate of 100 Myr−1 per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 Myr−1 MWEG−1 to 1000 Myr−1 MWEG−1 (Kalogera et al 2004 Astrophys. J. 601 L179; Kalogera et al 2004 Astrophys. J. 614 L137 (erratum)). We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial LIGO–Virgo interferometers, with a plausible range between 2 × 10−4 and 0.2 per year. The likely binary neutron–star detection rate for the Advanced LIGO–Virgo network increases to 40 events per year, with a range between 0.4 and 400 per year.

1,011 citations

Journal ArticleDOI
Eric C. Bellm1, Shrinivas R. Kulkarni2, Matthew J. Graham2, Richard Dekany2, Roger M. H. Smith2, Reed Riddle2, Frank J. Masci2, George Helou2, Thomas A. Prince2, Scott M. Adams2, Cristina Barbarino3, Tom A. Barlow2, James Bauer4, Ron Beck2, Justin Belicki2, Rahul Biswas3, Nadejda Blagorodnova2, Dennis Bodewits4, Bryce Bolin1, V. Brinnel5, Tim Brooke2, Brian D. Bue2, Mattia Bulla3, Rick Burruss2, S. Bradley Cenko4, S. Bradley Cenko6, Chan-Kao Chang7, Andrew J. Connolly1, Michael W. Coughlin2, John Cromer2, Virginia Cunningham4, Kaushik De2, Alex Delacroix2, Vandana Desai2, Dmitry A. Duev2, Gwendolyn Eadie1, Tony L. Farnham4, Michael Feeney2, Ulrich Feindt3, David Flynn2, Anna Franckowiak, Sara Frederick4, Christoffer Fremling2, Avishay Gal-Yam8, Suvi Gezari4, Matteo Giomi5, Daniel A. Goldstein2, V. Zach Golkhou1, Ariel Goobar3, Steven Groom2, Eugean Hacopians2, David Hale2, John Henning2, Anna Y. Q. Ho2, David Hover2, Justin Howell2, Tiara Hung4, Daniela Huppenkothen1, David Imel2, Wing-Huen Ip9, Wing-Huen Ip7, Željko Ivezić1, Edward Jackson2, Lynne Jones1, Mario Juric1, Mansi M. Kasliwal2, Shai Kaspi10, Stephen Kaye2, Michael S. P. Kelley4, Marek Kowalski5, Emily Kramer2, Thomas Kupfer11, Thomas Kupfer2, Walter Landry2, Russ R. Laher2, Chien De Lee7, Hsing Wen Lin12, Hsing Wen Lin7, Zhong-Yi Lin7, Ragnhild Lunnan3, Ashish Mahabal2, Peter H. Mao2, Adam A. Miller13, Adam A. Miller14, Serge Monkewitz2, Patrick J. Murphy2, Chow-Choong Ngeow7, Jakob Nordin5, Peter Nugent15, Peter Nugent16, Eran O. Ofek8, Maria T. Patterson1, Bryan E. Penprase17, Michael Porter2, L. Rauch, Umaa Rebbapragada2, Daniel J. Reiley2, Mickael Rigault18, Hector P. Rodriguez2, Jan van Roestel19, Ben Rusholme2, J. V. Santen, Steve Schulze8, David L. Shupe2, Leo Singer6, Leo Singer4, Maayane T. Soumagnac8, Robert Stein, Jason Surace2, Jesper Sollerman3, Paula Szkody1, Francesco Taddia3, Scott Terek2, Angela Van Sistine20, Sjoert van Velzen4, W. Thomas Vestrand21, Richard Walters2, Charlotte Ward4, Quanzhi Ye2, Po-Chieh Yu7, Lin Yan2, Jeffry Zolkower2 
TL;DR: The Zwicky Transient Facility (ZTF) as mentioned in this paper is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope, which provides a 47 deg^2 field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey.
Abstract: The Zwicky Transient Facility (ZTF) is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope. A custom-built wide-field camera provides a 47 deg^2 field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey, the Palomar Transient Factory. We describe the design and implementation of the camera and observing system. The ZTF data system at the Infrared Processing and Analysis Center provides near-real-time reduction to identify moving and varying objects. We outline the analysis pipelines, data products, and associated archive. Finally, we present on-sky performance analysis and first scientific results from commissioning and the early survey. ZTF's public alert stream will serve as a useful precursor for that of the Large Synoptic Survey Telescope.

1,009 citations

Journal ArticleDOI
TL;DR: The NASA Radiation Belt Storm Probes (RBSP) mission as discussed by the authors uses two spacecraft making in situ measurements for at least 2 years in nearly the same highly elliptical, low inclination orbits (1.1×5.8 RE, 10∘).
Abstract: The NASA Radiation Belt Storm Probes (RBSP) mission addresses how populations of high energy charged particles are created, vary, and evolve in space environments, and specifically within Earth’s magnetically trapped radiation belts. RBSP, with a nominal launch date of August 2012, comprises two spacecraft making in situ measurements for at least 2 years in nearly the same highly elliptical, low inclination orbits (1.1×5.8 RE, 10∘). The orbits are slightly different so that 1 spacecraft laps the other spacecraft about every 2.5 months, allowing separation of spatial from temporal effects over spatial scales ranging from ∼0.1 to 5 RE. The uniquely comprehensive suite of instruments, identical on the two spacecraft, measures all of the particle (electrons, ions, ion composition), fields (E and B), and wave distributions (d E and d B) that are needed to resolve the most critical science questions. Here we summarize the high level science objectives for the RBSP mission, provide historical background on studies of Earth and planetary radiation belts, present examples of the most compelling scientific mysteries of the radiation belts, present the mission design of the RBSP mission that targets these mysteries and objectives, present the observation and measurement requirements for the mission, and introduce the instrumentation that will deliver these measurements. This paper references and is followed by a number of companion papers that describe the details of the RBSP mission, spacecraft, and instruments.

1,004 citations


Authors

Showing all 19247 results

NameH-indexPapersCitations
Anton M. Koekemoer1681127106796
Alexander S. Szalay166936145745
David W. Johnson1602714140778
Donald G. York160681156579
Takeo Kanade147799103237
Gillian R. Knapp145460121477
Olaf Reimer14471674359
R. A. Sunyaev141848107966
Christopher T. Russell137237897268
Hui Li1352982105903
Neil Gehrels13472780804
Christopher B. Field13340888930
Igor V. Moskalenko13254258182
William T. Reach13153590496
Adam Burrows13062355483
Network Information
Related Institutions (5)
Marshall Space Flight Center
14.5K papers, 324.4K citations

91% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

90% related

National Center for Atmospheric Research
19.7K papers, 1.4M citations

90% related

California Institute of Technology
146.6K papers, 8.6M citations

88% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023186
2022327
20211,815
20202,153
20192,210
20182,325