scispace - formally typeset
Search or ask a question
Institution

Goddard Space Flight Center

FacilityGreenbelt, Maryland, United States
About: Goddard Space Flight Center is a facility organization based out in Greenbelt, Maryland, United States. It is known for research contribution in the topics: Galaxy & Solar wind. The organization has 19058 authors who have published 63344 publications receiving 2786037 citations. The organization is also known as: GSFC & Space Flight Center.
Topics: Galaxy, Solar wind, Magnetosphere, Stars, Population


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a statistical model, including terms for seasonal variation, linear trend, quasi-biennial oscillation, solar cycle and second-order autoregressive noise has been fit to the TOMS time series of total ozone data.
Abstract: The Total Ozone Mapping Spectrometer (TOMS) on the Nimbus 7 satellite has been measuring the total column amount of ozone over the globe for more than 11 years. Recent improvements in the data analysis have led to a technique for determining and removing drift in the calibration such that the data at the end of the record are precise to + or - 1.3 percent (2-sigma) relative to the data at the beginning of the record. A statistical model, including terms for seasonal variation, linear trend, quasi-biennial oscillation, solar cycle and second-order autoregressive noise has been fit to the TOMS time series of total ozone data. The linear trend obtained when this statistical model is fit to the TOMS data averaged between 65 N and 65 S latitudes is -0.26 + or - 0.14 percent/year or -3 percent over the 11.6 year time period from November 1978 to May 1990. The trend is near zero (0.0002 + or - 0.2 percent/year) at the equator and increases toward both poles.

527 citations

Journal ArticleDOI
28 Apr 2005-Nature
TL;DR: In this article, the authors reported that SGR1806-20, a soft γ-ray repeater in Sagittarius, released a giant flare that has been called the brightest explosion ever recorded.
Abstract: On 27 December last year, SGR1806–20, a soft γ-ray repeater in Sagittarius, released a giant flare that has been called the brightest explosion ever recorded. SGRs are X-ray stars that sporadically emit low-energy γ-ray bursts. They are thought to be magnetars: neutron stars with observable emissions powered by magnetic dissipation. Five papers in this issue report initial and follow-up observations of this event. The data are remarkable: for instance in a fifth of a second, the flare released as much energy as the Sun radiates in a quarter of a million years. Such power can be explained by catastrophic global crust failure and magnetic reconnection on a magnetar. Releasing a hundred times the energy of the only two previous SGR giant flares, this may have been a once-in-a-lifetime event for astronomers, and for the star itself. Two classes of rotating neutron stars—soft γ-ray repeaters (SGRs) and anomalous X-ray pulsars—are magnetars1, whose X-ray emission is powered by a very strong magnetic field (B ≈ 1015 G). SGRs occasionally become ‘active’, producing many short X-ray bursts. Extremely rarely, an SGR emits a giant flare with a total energy about a thousand times higher than in a typical burst2,3,4. Here we report that SGR 1806–20 emitted a giant flare on 27 December 2004. The total (isotropic) flare energy is 2 × 1046 erg, which is about a hundred times higher than the other two previously observed giant flares. The energy release probably occurred during a catastrophic reconfiguration of the neutron star's magnetic field. If the event had occurred at a larger distance, but within 40 megaparsecs, it would have resembled a short, hard γ-ray burst, suggesting that flares from extragalactic SGRs may form a subclass of such bursts.

526 citations

Journal ArticleDOI
TL;DR: The GPM mission collects essential rain and snow data for scientific studies and societal benefit and aims to provide real-time information about rainfall and snowfall to improve understanding of climate change.
Abstract: The GPM mission collects essential rain and snow data for scientific studies and societal benefit.

525 citations

Journal ArticleDOI
TL;DR: In this article, the authors performed a global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP, and concluded that water withdrawals at the scale of the whole Mississippi basin cannot be monitored by GRACE.

524 citations

Journal ArticleDOI
Judith Racusin1, S. V. Karpov2, Marcin Sokolowski, Jonathan Granot3, Xue-Feng Wu4, Xue-Feng Wu1, V. Pal'Shin, Stefano Covino5, A. J. van der Horst, S. R. Oates6, Patricia Schady6, Robert J. Smith7, J. Cummings8, R. L. C. Starling9, Lech Wiktor Piotrowski10, Bing Zhang11, P. A. Evans9, Stephen T. Holland12, Stephen T. Holland8, Katarzyna Małek, M. T. Page6, L. Vetere1, Raffaella Margutti13, C. Guidorzi5, C. Guidorzi7, Atish Kamble14, P. A. Curran14, A. P. Beardmore9, Chryssa Kouveliotou15, Lech Mankiewicz, A. Melandri7, P. T. O'Brien9, K. L. Page9, Tsvi Piran16, Nial R. Tanvir9, Grzegorz Wrochna, R. Aptekar, Scott Barthelmy8, Corrado Bartolini17, G. M. Beskin2, S. Bondar, Malcolm N. Bremer, Sergio Campana5, A. J. Castro-Tirado18, A. Cucchiara1, M. Cwiok10, P. D'Avanzo5, Valerio D'Elia, M. Della Valle19, A. de Ugarte Postigo19, W. Dominik10, A. D. Falcone1, Fabrizio Fiore, D. B. Fox1, D. D. Frederiks, Andrew S. Fruchter20, Dino Fugazza5, M. A. Garrett21, M. A. Garrett22, M. A. Garrett23, Neil Gehrels8, S. Golenetskii, Andreja Gomboc24, Javier Gorosabel18, G. Greco17, Adriano Guarnieri17, Stefan Immler8, Martin Jelínek18, Grzegorz Kasprowicz25, V. La Parola26, Andrew J. Levan27, V. Mangano26, E. P. Mazets, E. Molinari5, A. Moretti5, Krzysztof Nawrocki, P. Oleynik, J. P. Osborne9, C. Pagani1, S. B. Pandey28, Zsolt Paragi29, M. Perri, Adalberto Piccioni17, Enrico Ramirez-Ruiz30, P. W. A. Roming1, Iain A. Steele7, Richard G. Strom22, Richard G. Strom14, Vincenzo Testa, Gino Tosti31, M. Ulanov, Klaas Wiersema9, Ralph A. M. J. Wijers14, J. M. Winters, Aleksander Filip Zarnecki10, F. M. Zerbi5, Peter Mészáros1, Guido Chincarini13, Guido Chincarini5, David N. Burrows1 
11 Sep 2008-Nature
TL;DR: Observations of the extraordinarily bright prompt optical and γ-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks.
Abstract: Long-duration gamma-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment Here we report observations of the extraordinarily bright prompt optical and gamma-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet

524 citations


Authors

Showing all 19247 results

NameH-indexPapersCitations
Anton M. Koekemoer1681127106796
Alexander S. Szalay166936145745
David W. Johnson1602714140778
Donald G. York160681156579
Takeo Kanade147799103237
Gillian R. Knapp145460121477
Olaf Reimer14471674359
R. A. Sunyaev141848107966
Christopher T. Russell137237897268
Hui Li1352982105903
Neil Gehrels13472780804
Christopher B. Field13340888930
Igor V. Moskalenko13254258182
William T. Reach13153590496
Adam Burrows13062355483
Network Information
Related Institutions (5)
Marshall Space Flight Center
14.5K papers, 324.4K citations

91% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

90% related

National Center for Atmospheric Research
19.7K papers, 1.4M citations

90% related

California Institute of Technology
146.6K papers, 8.6M citations

88% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023186
2022327
20211,815
20202,153
20192,210
20182,325