scispace - formally typeset
Search or ask a question
Institution

Goddard Space Flight Center

FacilityGreenbelt, Maryland, United States
About: Goddard Space Flight Center is a facility organization based out in Greenbelt, Maryland, United States. It is known for research contribution in the topics: Galaxy & Solar wind. The organization has 19058 authors who have published 63344 publications receiving 2786037 citations. The organization is also known as: GSFC & Space Flight Center.
Topics: Galaxy, Solar wind, Magnetosphere, Stars, Population


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a method for estimating monthly burned area globally at 1 spatial resolution using Terra MODIS data and ancillary vegetation cover information was presented, where the constant of proportionality to vary as a function of tree and herbaceous vegetation cover, and the mean size of monthly cumulative firepixel clusters.
Abstract: We present a method for estimating monthly burned area globally at 1 spatial resolution using Terra MODIS data and ancillary vegetation cover information. Us- ing regression trees constructed for 14 different global re- gions, MODIS active fire observations were calibrated to burned area estimates derived from 500-m MODIS imagery based on the assumption that burned area is proportional to counts of fire pixels. Unlike earlier methods, we al- low the constant of proportionality to vary as a function of tree and herbaceous vegetation cover, and the mean size of monthly cumulative fire-pixel clusters. In areas undergoing active deforestation, we implemented a subsequent correc- tion based on tree cover information and a simple measure of fire persistence. Regions showing good agreement be- tween predicted and observed burned area included Boreal Asia, Central Asia, Europe, and Temperate North Amer- ica, where the estimates produced by the regression trees were relatively accurate and precise. Poorest agreement was found for southern-hemisphere South America, where pre- dicted values of burned area are both inaccurate and im- precise; this is most likely a consequence of multiple fac- tors that include extremely persistent cloud cover, and lower quality of the 500-m burned area maps used for calibration. Application of our approach to the nine remaining regions yielded comparatively accurate, but less precise, estimates of monthly burned area. We applied the regional regres- sion trees to the entire archive of Terra MODIS fire data to produce a monthly global burned area data set spanning late 2000 through mid-2005. Annual totals derived from this approach showed good agreement with independent annual estimates available for nine Canadian provinces, the United States, and Russia. With our data set we estimate the global

506 citations

Journal ArticleDOI
TL;DR: Improved calibration methods for both direct and diffuse radiation, the data-analysis procedure, the results from the proposed code, and several connected problems are discussed.
Abstract: The software code SKYEAD.pack for retrieval of aerosol size distribution and optical thickness from data of direct and diffuse solar radiation is described; measurements are carried out with sky radiometers in the wavelength range 0.369-1.048 µm. The treatment of the radiative transfer problem concerning the optical quantities is mainly based on the IMS (improved multiple and single scattering) method, which uses the delta-M approximation for the truncation of the aerosol phase function and corrects the solution for the first- and second-order scattering. Both linear and nonlinear inversion methods can be used for retrieving the size distribution. Improved calibration methods for both direct and diffuse radiation, the data-analysis procedure, the results from the proposed code, and several connected problems are discussed. The results can be summarized as follows: (a) the SKYRAD.pack code can retrieve the columnar aerosol features with accuracy and efficiency in several environmental situations, provided the input parameters are correctly given; (b) when data of both direct and diffuse solar radiation are used, the detectable radius interval for aerosol particles is approximately from 0.03 to 10 µm; (c) besides the retrieval of the aerosol features, the data-analysis procedure also permits the determination of average values for three input parameters (real and imaginary aerosol refractive index, ground albedo) from the optical data; (d) absolute calibrations for the sky radiometer are not needed, and calibrations for direct and diffuse radiation can be carried out with field data; (e) the nonlinear inversion gives satisfactory results in a larger radius interval, without the unrealistic humps that occur with the linear inversion, but the results strongly depend on the first-guess spectrum; (f) aerosol features retrieved from simulated data showed a better agreement with the given data for the linear inversion than for the nonlinear inversion.

504 citations

Journal ArticleDOI
TL;DR: The global distribution pattern of coccolithophrid blooms was mapped in order to ascertain the prevalence of these blooms in the world oceans and to estimate their worldwide production of CaCO3 and dimethyl sulfide (DMS) as mentioned in this paper.
Abstract: The global distribution pattern of coccolithophrid blooms was mapped in order to ascertain the prevalence of these blooms in the world's oceans and to estimate their worldwide production of CaCO3 and dimethyl sulfide (DMS). Mapping was accomplished by classifying pixels of 5-day global composites of coastal zone color scanner imagery into bloom and nonbloom classes using a supervised, multispectral classification scheme. Surface waters with the spectral signature of coccolithophorid blooms annually covered an average of 1.4 x 10(exp 6) sq km in the world oceans from 1979 to 1985, with the subpolar latitudes accounting for 71% of this surface area. Classified blooms were most extensive in the Subartic North Atlantic. Large expanses of the bloom signal were also detected in the North Pacific, on the Argentine shelf and slope, and in numerous lower latitude marginal seas and shelf regions. The greatest spatial extent of classified blooms in subpolar oceanic regions occurred in the months from summer to early autumn, while those in lower latitude marginal seas occurred in midwinter to early spring. Though the classification scheme was effcient in separating bloom and nonbloom classes during test simulations, and biogeographical literature generally confirms the resulting distribution pattern of blooms in the subpolar regions, the cause of the bloom signal is equivocal in some geographic areas, particularly on shelf regions at lower latitudes. Standing stock estimates suggest that the presumed Emiliania huxleyi blooms act as a significant source of calcite carbon and DMS sulfur on a regional scale. On a global scale, however, the satellite-detected coccolithophorid blooms are estimated to play only a minor role in the annual production of these two compounds and their flux from the surface mixed layer.

504 citations

Journal ArticleDOI
26 Jul 2001-Nature
TL;DR: The serendipitous encounter of the Wind spacecraft with an active reconnection diffusion region is reported, in which are detected key processes predicted by models of collisionless reconnection in the magnetotail.
Abstract: Magnetic reconnection is the process by which magnetic field lines of opposite polarity reconfigure to a lower-energy state, with the release of magnetic energy to the surroundings. Reconnection at the Earth's dayside magnetopause and in the magnetotail allows the solar wind into the magnetosphere1,2. It begins in a small ‘diffusion region’, where a kink in the newly reconnected lines produces jets of plasma away from the region. Although plasma jets from reconnection have previously been reported3,4,5,6,7, the physical processes that underlie jet formation have remained poorly understood because of the scarcity of in situ observations of the minuscule diffusion region. Theoretically, both resistive and collisionless processes can initiate reconnection8,9,10,11,12,13,14, but which process dominates in the magnetosphere is still debated. Here we report the serendipitous encounter of the Wind spacecraft with an active reconnection diffusion region, in which are detected key processes predicted by models8,9,10,11,12,13 of collisionless reconnection. The data therefore demonstrate that collisionless reconnection occurs in the magnetotail.

504 citations

Journal ArticleDOI
TL;DR: Using a mid-infrared calibration of the Cepheid distance scale based on recent observations at 3.6μm with the Spitzer Space Telescope, a new, high-accuracy calibration was obtained by as mentioned in this paper, which decreased the systematic uncertainty in H 0 over that obtained by the Hubble Space Telescope Key Project by over a factor of three.
Abstract: Using a mid-infrared calibration of the Cepheid distance scale based on recent observations at 3.6 μm with the Spitzer Space Telescope, we have obtained a new, high-accuracy calibration of the Hubble constant. We have established the mid-IR zero point of the Leavitt law (the Cepheid period-luminosity relation) using time-averaged 3.6 μm data for 10 high-metallicity, Milky Way Cepheids having independently measured trigonometric parallaxes. We have adopted the slope of the PL relation using time-averaged 3.6 μm data for 80 long-period Large Magellanic Cloud (LMC) Cepheids falling in the period range 0.8 < log(P) < 1.8. We find a new reddening-corrected distance to the LMC of 18.477 ± 0.033 (systematic) mag. We re-examine the systematic uncertainties in H 0, also taking into account new data over the past decade. In combination with the new Spitzer calibration, the systematic uncertainty in H 0 over that obtained by the Hubble Space Telescope Key Project has decreased by over a factor of three. Applying the Spitzer calibration to the Key Project sample, we find a value of H 0 = 74.3 with a systematic uncertainty of ±2.1 (systematic) km s–1 Mpc–1, corresponding to a 2.8% systematic uncertainty in the Hubble constant. This result, in combination with WMAP7 measurements of the cosmic microwave background anisotropies and assuming a flat universe, yields a value of the equation of state for dark energy, w 0 = –1.09 ± 0.10. Alternatively, relaxing the constraints on flatness and the numbers of relativistic species, and combining our results with those of WMAP7, Type Ia supernovae and baryon acoustic oscillations yield w 0 = –1.08 ± 0.10 and a value of N eff = 4.13 ± 0.67, mildly consistent with the existence of a fourth neutrino species.

503 citations


Authors

Showing all 19247 results

NameH-indexPapersCitations
Anton M. Koekemoer1681127106796
Alexander S. Szalay166936145745
David W. Johnson1602714140778
Donald G. York160681156579
Takeo Kanade147799103237
Gillian R. Knapp145460121477
Olaf Reimer14471674359
R. A. Sunyaev141848107966
Christopher T. Russell137237897268
Hui Li1352982105903
Neil Gehrels13472780804
Christopher B. Field13340888930
Igor V. Moskalenko13254258182
William T. Reach13153590496
Adam Burrows13062355483
Network Information
Related Institutions (5)
Marshall Space Flight Center
14.5K papers, 324.4K citations

91% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

90% related

National Center for Atmospheric Research
19.7K papers, 1.4M citations

90% related

California Institute of Technology
146.6K papers, 8.6M citations

88% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023186
2022327
20211,815
20202,153
20192,210
20182,325