scispace - formally typeset
Search or ask a question
Institution

Goddard Space Flight Center

FacilityGreenbelt, Maryland, United States
About: Goddard Space Flight Center is a facility organization based out in Greenbelt, Maryland, United States. It is known for research contribution in the topics: Galaxy & Solar wind. The organization has 19058 authors who have published 63344 publications receiving 2786037 citations. The organization is also known as: GSFC & Space Flight Center.
Topics: Galaxy, Solar wind, Magnetosphere, Stars, Population


Papers
More filters
Journal ArticleDOI
TL;DR: A real-time and retrospective North American Land Data Assimilation System (NLDAS) is presented in this article, which consists of four land models executing in parallel in uncoupled mode, common hourly surface forcing, and common streamflow routing: all using a 1/8° grid over the continental United States.
Abstract: [1] Results are presented from the multi-institution partnership to develop a real-time and retrospective North American Land Data Assimilation System (NLDAS). NLDAS consists of (1) four land models executing in parallel in uncoupled mode, (2) common hourly surface forcing, and (3) common streamflow routing: all using a 1/8° grid over the continental United States. The initiative is largely sponsored by the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project (GCIP). As the overview for nine NLDAS papers, this paper describes and evaluates the 3-year NLDAS execution of 1 October 1996 to 30 September 1999, a period rich in observations for validation. The validation emphasizes (1) the land states, fluxes, and input forcing of four land models, (2) the application of new GCIP-sponsored products, and (3) a multiscale approach. The validation includes (1) mesoscale observing networks of land surface forcing, fluxes, and states, (2) regional snowpack measurements, (3) daily streamflow measurements, and (4) satellite-based retrievals of snow cover, land surface skin temperature (LST), and surface insolation. The results show substantial intermodel differences in surface evaporation and runoff (especially over nonsparse vegetation), soil moisture storage, snowpack, and LST. Owing to surprisingly large intermodel differences in aerodynamic conductance, intermodel differences in midday summer LST were unlike those expected from the intermodel differences in Bowen ratio. Last, anticipating future assimilation of LST, an NLDAS effort unique to this overview paper assesses geostationary-satellite-derived LST, determines the latter to be of good quality, and applies the latter to validate modeled LST.

1,192 citations

Journal ArticleDOI
B. P. Abbott1, R. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1271 moreInstitutions (145)
TL;DR: In 2019, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9 and the Virgo detector was also taking data that did not contribute to detection due to a low SINR but were used for subsequent parameter estimation as discussed by the authors.
Abstract: On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from to if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass and the total mass of this system are significantly larger than those of any other known binary neutron star (BNS) system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to 250-2810.

1,189 citations

Journal ArticleDOI
TL;DR: The confidence limit of the method here termed EMD/HSA (for empirical mode decomposition/Hilbert spectral analysis) is introduced by using various adjustable stopping criteria in the sifting processes of the EMD step to generate a sample set of intrinsic mode functions (IMFs) as mentioned in this paper.
Abstract: The confidence limit is a standard measure of the accuracy of the result in any statistical analysis. Most of the confidence limits are derived as follows. The data are first divided into subsections and then, under the ergodic assumption, the temporal mean is substituted for the ensemble mean. Next, the confidence limit is defined as a range of standard deviations from this mean. However, such a confidence limit is valid only for linear and stationary processes. Furthermore, in order for the ergodic assumption to be valid, the subsections have to be statistically independent. For non‐stationary and nonlinear processes, such an analysis is no longer valid. The confidence limit of the method here termed EMD/HSA (for empirical mode decomposition/Hilbert spectral analysis) is introduced by using various adjustable stopping criteria in the sifting processes of the EMD step to generate a sample set of intrinsic mode functions (IMFs). The EMD technique acts as a pre‐processor for HSA on the original data, producing a set of components (IMFs) from the original data that equal the original data when added back together. Each IMF represents a scale in the data, from smallest to largest. The ensemble mean and standard deviation of the IMF sample sets obtained with different stopping criteria are calculated, and these form a simple random sample set. The confidence limit for EMD/HSA is then defined as a range of standard deviations from the ensemble mean. Without evoking the ergodic assumption, subdivision of the data stream into short sections is unnecessary; hence, the results and the confidence limit retain the full‐frequency resolution of the full dataset. This new confidence limit can be applied to the analysis of nonlinear and non‐stationary processes by these new techniques. Data from length‐of‐day measurements and a particularly violent recent earthquake are used to demonstrate how the confidence limit is obtained and applied. By providing a confidence limit for this new approach, a stable range of stopping criteria for the decomposition or sifting phase (EMD) has been established, making the results of the final processing with HSA, and the entire EMD/HSA method, more definitive.

1,178 citations

Journal ArticleDOI
14 Jul 2011-Nature
TL;DR: Simulation of the early Solar System shows how the inward migration of Jupiter to 1.5 au, and its subsequent outward migration, lead to a planetesimal disk truncated at 1’au; the terrestrial planets then form from this disk over the next 30–50 million years, with an Earth/Mars mass ratio consistent with observations.
Abstract: Jupiter and Saturn formed in a few million years from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only approximately 100,000 years. Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 AU is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 AU, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 AU; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 AU and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.

1,174 citations

Journal ArticleDOI
TL;DR: In this article, the authors used satellite data to specify the time-varying phonological properties of FPAR, leaf area index, and canopy greenness fraction, and applied corrections to the source NDVI dataset to account for anomalies in the data time series, the effect of variations in solar zenith angle, data dropouts in cold regions where a temperature threshold procedure designed to screen for clouds also eliminated cold land surface points, and persistent cloud cover in the Tropics.
Abstract: The global parameter fields used in the revised Simple Biosphere Model (SiB2) of Sellers et al. are reviewed. The most important innovation over the earlier SiB1 parameter set of Dorman and Sellers is the use of satellite data to specify the time-varying phonological properties of FPAR, leaf area index. and canopy greenness fraction. This was done by processing a monthly 1° by 1° normalized difference vegetation index (NDVI) dataset obtained farm Advanced Very High Resolution Radiometer red and near-infrared data. Corrections were applied to the source NDVI dataset to account for (i) obvious anomalies in the data time series, (ii) the effect of variations in solar zenith angle, (iii) data dropouts in cold regions where a temperature threshold procedure designed to screen for clouds also eliminated cold land surface points, and (iv) persistent cloud cover in the Tropics. An outline of the procedures for calculating the land surface parameters from the corrected NDVI dataset is given, and a brief d...

1,174 citations


Authors

Showing all 19247 results

NameH-indexPapersCitations
Anton M. Koekemoer1681127106796
Alexander S. Szalay166936145745
David W. Johnson1602714140778
Donald G. York160681156579
Takeo Kanade147799103237
Gillian R. Knapp145460121477
Olaf Reimer14471674359
R. A. Sunyaev141848107966
Christopher T. Russell137237897268
Hui Li1352982105903
Neil Gehrels13472780804
Christopher B. Field13340888930
Igor V. Moskalenko13254258182
William T. Reach13153590496
Adam Burrows13062355483
Network Information
Related Institutions (5)
Marshall Space Flight Center
14.5K papers, 324.4K citations

91% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

90% related

National Center for Atmospheric Research
19.7K papers, 1.4M citations

90% related

California Institute of Technology
146.6K papers, 8.6M citations

88% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023186
2022327
20211,815
20202,153
20192,210
20182,325