scispace - formally typeset
Search or ask a question
Institution

Hanyang University

EducationSeoul, South Korea
About: Hanyang University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Thin film & Population. The organization has 29387 authors who have published 58815 publications receiving 1190144 citations. The organization is also known as: Hanyang Taehakkyo.
Topics: Thin film, Population, Oxide, Membrane, Catalysis


Papers
More filters
Journal ArticleDOI
TL;DR: A haplotype of STAT4 is associated with increased risk for both rheumatoid arthritis and systemic lupus erythematosus, suggesting a shared pathway for these illnesses.
Abstract: A SNP haplotype in the third intron of STAT4 was associated with susceptibility to both rheumatoid arthritis and systemic lupus erythematosus. The minor alleles of the haplotype-defining SNPs were present in 27% of chromosomes of patients with established rheumatoid arthritis, as compared with 22% of those of controls (for the SNP rs7574865, P = 2.81×10 −7 ; odds ratio for having the risk allele in chromosomes of patients vs. those of controls, 1.32). The association was replicated in Swedish patients with recent-onset rheumatoid arthritis (P = 0.02) and matched controls. The haplotype marked by rs7574865 was strongly associated with lupus, being present on 31% of chromosomes of case patients and 22% of those of controls (P = 1.87×10 −9 ; odds ratio for having the risk allele in chromosomes of patients vs. those of controls, 1.55). Homozygosity of the risk allele, as compared with absence of the allele, was associated with a more than doubled risk for lupus and a 60% increased risk for rheumatoid arthritis. CONCLUSIONS

1,008 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive literature review of AC and DC microgrid (MG) systems in connection with distributed generation (DG) units using renewable energy sources (RESs), energy storage systems (ESS) and loads.
Abstract: This paper presents the latest comprehensive literature review of AC and DC microgrid (MG) systems in connection with distributed generation (DG) units using renewable energy sources (RESs), energy storage systems (ESS) and loads. A survey on the alternative DG units' configurations in the low voltage AC (LVAC) and DC (LVDC) distribution networks with several applications of microgrid systems in the viewpoint of the current and the future consumer equipments energy market is extensively discussed. Based on the economical, technical and environmental benefits of the renewable energy related DG units, a thorough comparison between the two types of microgrid systems is provided. The paper also investigates the feasibility, control and energy management strategies of the two microgrid systems relying on the most current research works. Finally, the generalized relay tripping currents are derived and the protection strategies in microgrid systems are addressed in detail. From this literature survey, it can be revealed that the AC and DC microgrid systems with multiconverter devices are intrinsically potential for the future energy systems to achieve reliability, efficiency and quality power supply.

1,004 citations

Journal ArticleDOI
TL;DR: In this article, a gate-stable ZnO thin-film transistors (TFTs) with aluminum oxide dielectric was fabricated. But the gate-bias reliability of the TFT was not improved.
Abstract: We report on the fabrication of gate-stable ZnO thin-film transistors (TFTs) with aluminum oxide dielectric. When an off-stoichiometric AlO x was deposited at room temperature, the ZnO-TFT revealed unreliable transfer characteristics: a large drain current-gate bias (I D -V G ) hysteresis and a large amount of threshold voltage (V T ) shift under gate-bias stress. As rapid thermal annealing (RTA) in O 2 ambient was applied onto AIO X at 300°C prior to ZnO channel deposition, the gate-bias reliability of the ZnO device was improved. The RTA might cause our AlO x surface to be more stoichiometric and thus to be resistant against ZnO sputter-induced damage. When the bottom-gate ZnO-TFT was fabricated with a stoichiometric Al 2 O 3 dielectric grown by atomic layer deposition (ALD), our device showed much more stable electrical characteristics than with the sputter-deposited off-stoichiometric AlO x . Last, as an ultimate effort to improve the gate reliability, we fabricated a top-gate ZnO-TFT device adopting the same thick ALD-grown stoichiometric Al 2 O 3 as in the bottom-gate device. Our top-gate device with the Al 2 O 3 dielectric then showed no hysteresis and no V T shift after several times of gate bias sweep. We conclude that both the high quality dielectric and optimized device structure are necessary to realize electrically stable ZnO-TFTs.

996 citations

Journal ArticleDOI
TL;DR: This work demonstrates a lithium-air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh g(carbon)(-1) and 3 A g( carbon)(- 1), respectively, and estimates an energy density value that is much higher than those offered by the currently available lithium-ion battery technology.
Abstract: Although dominating the consumer electronics markets as the power source of choice for popular portable devices, the common lithium battery is not yet suited for use in sustainable electrified road transport. The development of advanced, higher-energy lithium batteries is essential in the rapid establishment of the electric car market. Owing to its exceptionally high energy potentiality, the lithium-air battery is a very appealing candidate for fulfilling this role. However, the performance of such batteries has been limited to only a few charge-discharge cycles with low rate capability. Here, by choosing a suitable stable electrolyte and appropriate cell design, we demonstrate a lithium-air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh g(carbon)(-1) and 3 A g(carbon)(-1), respectively. For this battery we estimate an energy density value that is much higher than those offered by the currently available lithium-ion battery technology.

988 citations

Journal ArticleDOI
04 Apr 2014-Science
TL;DR: Experimental and theoretical approaches for using ideas in soft microfluidics, structured adhesive surfaces, and controlled mechanical buckling to achieve ultralow modulus, highly stretchable systems that incorporate assemblies of high-modulus, rigid, state-of-the-art functional elements are described.
Abstract: When mounted on the skin, modern sensors, circuits, radios, and power supply systems have the potential to provide clinical-quality health monitoring capabilities for continuous use, beyond the confines of traditional hospital or laboratory facilities. The most well-developed component technologies are, however, broadly available only in hard, planar formats. As a result, existing options in system design are unable to effectively accommodate integration with the soft, textured, curvilinear, and time-dynamic surfaces of the skin. Here, we describe experimental and theoretical approaches for using ideas in soft microfluidics, structured adhesive surfaces, and controlled mechanical buckling to achieve ultralow modulus, highly stretchable systems that incorporate assemblies of high-modulus, rigid, state-of-the-art functional elements. The outcome is a thin, conformable device technology that can softly laminate onto the surface of the skin to enable advanced, multifunctional operation for physiological monitoring in a wireless mode.

975 citations


Authors

Showing all 29583 results

NameH-indexPapersCitations
John A. Rogers1771341127390
Charles M. Lieber165521132811
Jongmin Lee1502257134772
Rajesh Kumar1494439140830
Prashant V. Kamat14072579259
Tae Jeong Kim132142093959
Jie Liu131153168891
Junghwan Goh128106877137
Young Hee Lee122116861107
Allan H. MacDonald11992656221
Terence G. Langdon117115861603
Yang-Kook Sun11778158912
Sang Yup Lee117100553257
Yoshinobu Unno11587566107
Xi Chen105154752533
Network Information
Related Institutions (5)
Sungkyunkwan University
56.4K papers, 1.3M citations

98% related

Korea University
82.4K papers, 1.8M citations

98% related

Seoul National University
138.7K papers, 3.7M citations

97% related

Pusan National University
45K papers, 819.3K citations

97% related

Yonsei University
106.1K papers, 2.2M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202379
2022397
20214,031
20204,061
20193,855
20183,670