scispace - formally typeset
Search or ask a question
Institution

Hanyang University

EducationSeoul, South Korea
About: Hanyang University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Thin film & Population. The organization has 29387 authors who have published 58815 publications receiving 1190144 citations. The organization is also known as: Hanyang Taehakkyo.
Topics: Thin film, Population, Oxide, Membrane, Catalysis


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the synthesis of nanowire and hollow LiFePO4 cathodes using the hard templates KIT-6 and SBA-15 is reported for high-performance lithium batteries.
Abstract: The synthesis of nanowire and hollow LiFePO4 cathodes using the hard templates KIT-6 and SBA-15 is reported for high-performance lithium batteries. The two-dimensional hexagonal SBA-15 silica template with P6mm symmetry is used for the template that contains parallel cylindrical pores arranged with hexagonal symmetry, which serves to organize the wires into parallel bundles. On the other hand, three-dimensional cubic arrangement of pores in KIT-6 silica with Ia3d symmetry yields hollow morphology with mesopores. After impregnation of the template into a solution or after coating on the template with a solution consisting of LiFePO4 precursors, the silica template is removed and is subsequently fired at 700 °C. Electrochemical cycling of both the nanowire and hollow LiFePO4 cathodes demonstrates excellent rate capability even above 10C rate, showing >89% capacity retention of the initial capacity. Among them, the rate capability of the hollow cathode at 15C is higher than that of the nanowire cathode, show...

183 citations

Journal ArticleDOI
TL;DR: When stabilized hydrogen peroxide is injected into the subsurface during in situ bioremediation, naturally occurring minerals such as goethite may initiate Fenton-like reactions, which have the potential to chemically oxidize contaminants in soils and groundwater.

182 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined LiI as an electrolyte and additive in Li oxygen cells with ethereal electrolyte solutions and found that at high concentrations of LiI, the presence of the salt promotes a side reaction that forms LiOH as a major product.
Abstract: Mankind has been in an unending search for efficient sources of energy. The coupling of lithium and oxygen in aprotic solvents would seem to be a most promising direction for electrochemistry. Indeed, if successful, this system could compete with technologies such as the internal combustion engine and provide an energy density that would accommodate the demands of electric vehicles. All this promise has not yet reached fruition because of a plethora of practical barriers and challenges. These include solvent and electrode stability, pronounced overvoltage for oxygen evolution reactions, limited cycle life and rate capability. One of the approaches suggested to facilitate the oxygen evolution reactions and improve rate capability is the use of redox mediators such as iodine for the fast oxidation of lithium peroxide. In this paper we have examined LiI as an electrolyte and additive in Li oxygen cells with ethereal electrolyte solutions. At high concentrations of LiI, the presence of the salt promotes a side reaction that forms LiOH as a major product. In turn, the presence of oxygen facilitates the reduction of I3− to 3I− in these systems. At very low concentrations of LiI, oxygen is reduced to Li2O2. The iodine formed in the anodic reaction serves as a redox mediator for Li2O2 oxidation.

182 citations

Journal ArticleDOI
TL;DR: In this paper, a superstructure including the conventional amine-based CO2 capture configuration and four different types of structural modifications is constructed in the process simulator UniSim® to reveal the configuration and operating conditions giving the minimum energy costs, systematically and simultaneously considering all of the possible modifications included.

182 citations

Journal ArticleDOI
TL;DR: The analytical results show that the proposed prognostic method is more effective in the prediction of RUL of lithium-ion batteries, compared with an existing PF-based prognostic methods.
Abstract: Lithium-ion batteries are critical components to provide power sources for commercial products. To ensure a high reliability of lithium-ion batteries, prognostic actions for lithium-ion batteries should be prepared. In this paper, a prognostic method is proposed to predict the remaining useful life (RUL) of lithium-ion batteries. A state-space model for the lithium-ion battery capacity is first constructed to assess capacity degradation. Then, a spherical cubature particle filter (SCPF) is introduced to solve the state-space model. The major idea of the SCPF is to adapt a spherical cubature integration-based Kalman filter to provide an importance function of a standard particle filter (PF). Once the state-space model is determined, the extrapolations of the state-space model to a specified failure threshold are performed to infer the RUL of the lithium-ion batteries. Degradation data of 26 lithium-ion battery capacities were analyzed to validate the effectiveness of the proposed prognostic method. The analytical results show that the proposed prognostic method is more effective in the prediction of RUL of lithium-ion batteries, compared with an existing PF-based prognostic method.

182 citations


Authors

Showing all 29583 results

NameH-indexPapersCitations
John A. Rogers1771341127390
Charles M. Lieber165521132811
Jongmin Lee1502257134772
Rajesh Kumar1494439140830
Prashant V. Kamat14072579259
Tae Jeong Kim132142093959
Jie Liu131153168891
Junghwan Goh128106877137
Young Hee Lee122116861107
Allan H. MacDonald11992656221
Terence G. Langdon117115861603
Yang-Kook Sun11778158912
Sang Yup Lee117100553257
Yoshinobu Unno11587566107
Xi Chen105154752533
Network Information
Related Institutions (5)
Sungkyunkwan University
56.4K papers, 1.3M citations

98% related

Korea University
82.4K papers, 1.8M citations

98% related

Seoul National University
138.7K papers, 3.7M citations

97% related

Pusan National University
45K papers, 819.3K citations

97% related

Yonsei University
106.1K papers, 2.2M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202379
2022397
20214,031
20204,061
20193,855
20183,670