scispace - formally typeset
Search or ask a question
Institution

Hanyang University

EducationSeoul, South Korea
About: Hanyang University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Thin film & Population. The organization has 29387 authors who have published 58815 publications receiving 1190144 citations. The organization is also known as: Hanyang Taehakkyo.
Topics: Thin film, Population, Oxide, Membrane, Catalysis


Papers
More filters
Journal ArticleDOI
07 Feb 2008-ACS Nano
TL;DR: In vitro Kirby-Bauer assays against Staphylococcus aureus were used to illustrate that the drug-loaded micelle LbL film can release significant amounts of an active antibacterial drug, triclosan, to inhibit the growth of bacteria.
Abstract: We present the integration of amphiphilic block copolymer micelles as nanometer-sized vehicles for hydrophobic drugs within layer-by-layer (LbL) films using alternating hydrogen bond interactions as the driving force for assembly for the first time, thus enabling the incorporation of drugs and pH-sensitive release. The film was constructed based on the hydrogen bonding between poly(acrylic acid) (PAA) as an H-bond donor and biodegradable poly(ethylene oxide)-block-poly(ϵ-caprolactone) (PEO-b-PCL) micelles as the H-bond acceptor when assembled under acidic conditions. By taking advantage of the weak interactions of the hydrogen-bonded film on hydrophobic surfaces, it is possible to generate flexible free-standing films of these materials. A free-standing micelle LbL film of (PEO-b-PCL/PAA)60 with a thickness of 3.1 µm was isolated, allowing further characterization of the bulk film properties, including morphology and phase transitions, using transmission electron microscopy and differential scanning calor...

470 citations

Book ChapterDOI
01 Jan 2014
TL;DR: In this paper, the authors introduce a framework called technological pedagogical content knowledge (or TPACK for short), which describes the kinds of knowledge needed by a teacher for effective technology integration.
Abstract: In this chapter, we introduce a framework, called technological pedagogical content knowledge (or TPACK for short), that describes the kinds of knowledge needed by a teacher for effective technology integration. The TPACK framework emphasizes how the connections among teachers’ understanding of content, pedagogy, and technology interact with one another to produce effective teaching. Even as a relatively new framework, the TPACK framework has significantly influenced theory, research, and practice in teacher education and teacher professional development. In this chapter, we describe the theoretical underpinnings of the framework, and explain the relationship between TPACK and related constructs in the educational technology literature. We outline the various approaches teacher educators have used to develop TPACK in pre- and in-service teachers, and the theoretical and practical issues that these professional development efforts have illuminated. We then review the widely varying approaches to measuring TPACK, with an emphasis on the interaction between form and function of the assessment, and resulting reliability and validity outcomes for the various approaches. We conclude with a summary of the key theoretical, pedagogical, and methodological issues related to TPACK, and suggest future directions for researchers, practitioners, and teacher educators.

469 citations

Journal ArticleDOI
TL;DR: In this paper, a facile etching method coupled with a novel sulfidation-in-nanobox strategy is developed to synthesize unique FeS2@C yolkshell nanoboxes.
Abstract: Pyrite (FeS2) is an attractive anode material for sodium-ion batteries (SIBs) with a high theoretical capacity of 894 mAh g−1. However, its practical application is greatly hindered by the rapid capacity fading caused by the large volume expansion upon sodiation. Tuning the morphology and structure at nanoscale and applying a higher cut-off voltage are essential to address this issue. Here, a facile etching method coupled with a novel sulfidation-in-nanobox strategy is developed to synthesize unique FeS2@C yolk–shell nanoboxes. The as-obtained FeS2@C nanoboxes reveal excellent sodium storage performance. The remarkable electrochemical properties are attributed to the elaborate yolk–shell nanoarchitecture. In particular, it delivers a high specific capacity of 511 mAh g−1 at 100 mA g−1 after 100 cycles. Furthermore, a high specific capacity of 403 mAh g−1 even at 5 A g−1 is delivered. Most impressively, a stable capacity of 330 mAh g−1 can still be retained at 2 A g−1 even after 800 cycles.

465 citations

Journal ArticleDOI
TL;DR: Analysis of mitochondrial responses in iPSC-derived neural cells from PD patients carrying different mutations provides insight into convergence of cellular disease mechanisms between different familial forms of PD and highlights the importance of oxidative stress and mitochondrial dysfunction in this neurodegenerative disease.
Abstract: Parkinson’s disease (PD) is a common neurodegenerative disorder caused by genetic and environmental factors that results in degeneration of the nigrostriatal dopaminergic pathway in the brain. We analyzed neural cells generated from induced pluripotent stem cells (iPSCs) derived from PD patients and presymptomatic individuals carrying mutations in the PINK1 (PTEN-induced putative kinase 1 )a ndLRRK2 (leucine-rich repeat kinase 2) genes, and compared them to those of healthy control subjects. We measured several aspects of mitochondrial responses in the iPSC-derived neural cells including production of reactive oxygen species, mitochondrial respiration, proton leakage, and intraneuronal movement of mitochondria. Cellular vulnerability associated with mitochondrial dysfunction in iPSC-derived neural cells from familial PD patients and at-risk individuals could be rescued with coenzyme Q10, rapamycin, or the LRRK2 kinase inhibitor GW5074. Analysis of mitochondrial responses in iPSCderived neural cells from PD patients carrying different mutations provides insight into convergence of cellular disease mechanisms between different familial forms of PD and highlights the importance of oxidative stress and mitochondrial dysfunction in this neurodegenerative disease.

465 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1215 moreInstitutions (134)
TL;DR: In this paper, the mass, spin, and redshift distributions of binary black hole (BBH) mergers with LIGO and Advanced Virgo observations were analyzed using phenomenological population models.
Abstract: We present results on the mass, spin, and redshift distributions with phenomenological population models using the 10 binary black hole (BBH) mergers detected in the first and second observing runs completed by Advanced LIGO and Advanced Virgo. We constrain properties of the BBH mass spectrum using models with a range of parameterizations of the BBH mass and spin distributions. We find that the mass distribution of the more massive BH in such binaries is well approximated by models with no more than 1% of BHs more massive than 45 M and a power-law index of (90% credibility). We also show that BBHs are unlikely to be composed of BHs with large spins aligned to the orbital angular momentum. Modeling the evolution of the BBH merger rate with redshift, we show that it is flat or increasing with redshift with 93% probability. Marginalizing over uncertainties in the BBH population, we find robust estimates of the BBH merger rate density of R= (90% credibility). As the BBH catalog grows in future observing runs, we expect that uncertainties in the population model parameters will shrink, potentially providing insights into the formation of BHs via supernovae, binary interactions of massive stars, stellar cluster dynamics, and the formation history of BHs across cosmic time.

464 citations


Authors

Showing all 29583 results

NameH-indexPapersCitations
John A. Rogers1771341127390
Charles M. Lieber165521132811
Jongmin Lee1502257134772
Rajesh Kumar1494439140830
Prashant V. Kamat14072579259
Tae Jeong Kim132142093959
Jie Liu131153168891
Junghwan Goh128106877137
Young Hee Lee122116861107
Allan H. MacDonald11992656221
Terence G. Langdon117115861603
Yang-Kook Sun11778158912
Sang Yup Lee117100553257
Yoshinobu Unno11587566107
Xi Chen105154752533
Network Information
Related Institutions (5)
Sungkyunkwan University
56.4K papers, 1.3M citations

98% related

Korea University
82.4K papers, 1.8M citations

98% related

Seoul National University
138.7K papers, 3.7M citations

97% related

Pusan National University
45K papers, 819.3K citations

97% related

Yonsei University
106.1K papers, 2.2M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202379
2022397
20214,031
20204,061
20193,855
20183,670