scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology, Jodhpur

EducationJodhpur, India
About: Indian Institute of Technology, Jodhpur is a education organization based out in Jodhpur, India. It is known for research contribution in the topics: Computer science & Welding. The organization has 914 authors who have published 2221 publications receiving 19243 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The impact of gamma irradiation on the performance of a gold Schottky-contacted ZnO nanorod-based hydrogen sensor is reported and the relative response of the hydrogen sensor was enhanced by ∼14.9% with respect to pristine ZNO using 1 kGy gamma ray treatment.
Abstract: We report the impact of gamma irradiation on the performance of a gold Schottky-contacted ZnO nanorod-based hydrogen sensor. RF-sputtered vertically aligned highly c-axis-oriented ZnO NRs were grown on Si(100) substrate. X-ray diffraction shows no significant change in crystal structure at low gamma doses from 1 to 5 kGy. As gamma irradiation doses increase to 10 kGy, the single crystalline ZnO structure converts to polycrystalline. The photoluminescence spectra also shows suppression of the near-band emission peak and the huge wide-band spectrum indicates the generation of structural defects at high gamma doses. At 1 kGy, the hydrogen sensor response was enhanced from 67% to 77% for 1% hydrogen in pure argon at a 150 °C operating temperature. However, at 10 kGy, the relative response decreases to 33.5%. High gamma irradiation causes displacement damage and defects in ZnO NRs, and as a result, degrades the sensor's performance as a result. Low gamma irradiation doses activate the ZnO NR surface through ionization, which enhances the sensor performance. The relative response of the hydrogen sensor was enhanced by ∼14.9% with respect to pristine ZnO using 1 kGy gamma ray treatment.

17 citations

Journal ArticleDOI
TL;DR: In this article, the authors theoretically analyzed the stability of a dielectric elastomer fiber composite made up of two soft incompressible DE phases in the quasi-static and dynamic modes of actuation.

17 citations

Journal ArticleDOI
TL;DR: In this article, the Unruh effect can be quantified mathematically by the Choi matrix approach, and the effect of environmentally induced decoherence modifies the unruh channel.
Abstract: In this work, we study an important facet of field theories in curved space-time, viz. the Unruh effect, by making use of ideas of statistical mechanics and quantum foundations. Aspects of decoherence and dissipation, natural artifacts of open quantum systems, along with foundational issues such as the trade-off between coherence and mixing as well as various aspects of quantum correlations are investigated in detail for the Unruh effect. We show how the Unruh effect can be quantified mathematically by the Choi matrix approach. We study how environmentally induced decoherence modifies the effect of the Unruh channel. The differing effects of a dissipative or non-dissipative environment are noted. Further, useful parameters characterizing channel performance such as gate and channel fidelity are applied here to the Unruh channel, both with and without external influences. Squeezing, which is known to play an important role in the context of particle creation, is shown to be a useful resource in a number of scenarios.

17 citations

Journal ArticleDOI
TL;DR: In this article, the structure and dynamics of both lipids and water near membranes using simulations as in experiments is a challenging task, which is why it is difficult to capture structure and dynamic properties of both lipid and water.

17 citations

Journal ArticleDOI
TL;DR: The present study demonstrates the application of in-situ, neutron or X-ray, diffraction techniques to correlating SF strengthening to work hardening in a low SFE Fe40Mn20Cr15Co20Si5 (at%) high entropy alloy.
Abstract: Transformation induced plasticity (TRIP) leads to enhancements in ductility in low stacking fault energy (SFE) alloys, however to achieve an unconventional increase in strength simultaneously, there must be barriers to dislocation motion. While stacking faults (SFs) contribute to strengthening by impeding dislocation motion, the contribution of SF strengthening to work hardening during deformation is not well understood; as compared to dislocation slip, twinning induced plasticity (TWIP) and TRIP. Thus, we used in-situ neutron diffraction to correlate SF strengthening to work hardening behavior in a low SFE Fe40Mn20Cr15Co20Si5 (at%) high entropy alloy, SFE ~ 6.31 mJ m−2. Cooperative activation of multiple mechanisms was indicated by increases in SF strengthening and γ-f.c.c. → e-h.c.p. transformation leading to a simultaneous increase in strength and ductility. The present study demonstrates the application of in-situ, neutron or X-ray, diffraction techniques to correlating SF strengthening to work hardening.

17 citations


Authors

Showing all 958 results

NameH-indexPapersCitations
Rajesh Kumar1494439140830
Anthony Atala125123560790
Rama Chellappa120103162865
Soebur Razzaque7731827790
Sanjay Singh71113322099
Rakesh Sharma6067314157
Richa Singh534229145
Vinothan N. Manoharan451329330
Madhu Dikshit432105327
S. Venugopal Rao412064635
Amit Mishra384015735
Surajit Das351853984
Prem Kalra332374151
Ankur Gupta312304000
Subhashish Banerjee302012710
Network Information
Related Institutions (5)
Indian Institute of Technology Delhi
26.9K papers, 503.8K citations

93% related

Indian Institute of Technology Kanpur
28.6K papers, 576.8K citations

93% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

92% related

Indian Institute of Technology Bombay
33.5K papers, 570.5K citations

92% related

Indian Institute of Science
62.4K papers, 1.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202320
202279
2021505
2020475
2019283
2018277