scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology, Jodhpur

EducationJodhpur, India
About: Indian Institute of Technology, Jodhpur is a education organization based out in Jodhpur, India. It is known for research contribution in the topics: Computer science & Welding. The organization has 914 authors who have published 2221 publications receiving 19243 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, deprotonated forms of tetradentate phenol amine ligands 2-((1-methylbenzimidazol-2-yl)methyl)(pyridin-2 -ylmethyl)amino)methyl)phenol (HL1) and 2-(pyrin- 2-ylmethyl)(quinolin- 2 -yl methyl)methyl (HL2), dinuclear copper(II) complexes were synthesized.
Abstract: Using the deprotonated forms of the tetradentate phenol amine ligands 2-((((1-methylbenzimidazol-2-yl)methyl)(pyridin-2-ylmethyl)amino)methyl)phenol (HL1) and 2-(((pyridin-2-ylmethyl)(quinolin-2-ylmethyl)amino)methyl)phenol (HL2), dinuclear copper(II) complexes were synthesized. These ligands yielded two binuclear complexes with the composition [Cu2(Ln)2](ClO4)2 [n = 1, (1) and n = 2, (2)] and two mononuclear complexes with the compositions [Cu(HL1)(CH3CN)](ClO4)2 (3) and [Cu(HL2) (CH3CN)(OClO3)](ClO4) (4), which have been characterized using X-ray crystallography, UV-Vis, and magnetic susceptibility measurements. The magnetic susceptibility studies of 1 and 2 indicate moderate antiferromagnetic coupling between the CuII ions through the μ-phenoxo bridges [J = −38(2) and −145(1) cm−1, respectively], which is described by the Bleaney–Bowers dinuclear model. In contrast, 3 and 4 are devoid of any significant magnetic interactions between the mononuclear units. 3 and 4 show axial spectra typical of the d9 (dx2–y2 as the ground state) configuration. The dimer complexes 1 and 2 can be converted into the corresponding monomeric Cu(II) complexes 3 and 4via adding two equivalents of an acid, such as perchloric acid (HClO4), to a CH3CN solution of the dimer. The dimeric core can be regenerated via adding an equivalent of a base, such as triethylamine (Et3N). Time-dependent density functional theory (TD-DFT) calculations using the M06 functional were performed in order to rationalize the electronic structures of the complexes and to shed light on the origin of the observed electronic transitions. Additionally, DFT/B3LYP calculations helped us to unambiguously state the sign and magnitude of the magnetic coupling constants along with an approximation of the spin density distribution.

8 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide rigorous analysis of eight diverse Indian regional cuisines, while also highlighting their uniqueness, and a comparison among those models at the level of flavor compounds which opens up molecular level studies associating them especially with non-communicable diseases such as diabetes.
Abstract: Culinary systems, the practice of preparing a refined combination of ingredients that is palatable as well as socially acceptable, are examples of complex dynamical systems. They evolve over time and are affected by a large number of factors. Modeling the dynamic nature of evolution of regional cuisines may provide us a quantitative basis and exhibit underlying processes that have driven them into the present day status. This is especially important given that the potential culinary space is practically infinite because of possible number of ingredient combinations as recipes. Such studies also provide a means to compare and contrast cuisines and to unearth their therapeutic value. Herein we provide rigorous analysis of modeling eight diverse Indian regional cuisines, while also highlighting their uniqueness, and a comparison among those models at the level of flavor compounds which opens up molecular level studies associating them especially with non-communicable diseases such as diabetes.

8 citations

Book ChapterDOI
TL;DR: FIT reduces to quantum information theory, QIT, if the clocking geometry in the Bloch sphere and virtual poles are removed and the singularity feature of a “bing” is eliminated, which makes it a classical state.
Abstract: We propose fractal information theory (FIT) to compute, and it uses a Fractal tape, wherein “every single cell of a Turing tape contains a Turing tape inside.” To use this tape, we introduce a geometric musical language (GML). This language has only one letter, a time cycle, a rhythm, a clock, or a unitary operator; on the circle perimeter, multiple singular bursts or “bings” (singularity represented as circles) are located. Time gap or “silence” between the “bings” is adjusted to hold the geometric parameters of structures such as square, triangle. Each time cycle is part of a phase space or a Bloch sphere; hence, information is now a “Bloch sphere with a clocking geometry.” Several such spheres self-assemble and expand like a balloon to store and process complex information; “bings” are singularity glue to add clocking Bloch spheres into it; this is the basic of fractal information theory (FIT). The conversion of five sensory signals into geometric shapes and rhythms like music and vice versa is called geometric musical language (GML). New information is integrated as guest into a single ever-expanding host Bloch sphere. The distinction between questions and answers disappears and replaced by “situation,” written as geometric shapes and always paired together in a time cycle, side by side or one inside another. Just like a human brain, FIT-GML hypercomputing does not require algorithm or programming, and it uses the fractal beating, i.e., geometric nesting inside a Hilbert space. FIT reduces to quantum information theory, QIT, if the clocking geometry in the Bloch sphere and virtual poles are removed and the singularity feature of a “bing” is eliminated, which makes it a classical state.

8 citations

Journal ArticleDOI
TL;DR: In this article, the lack of quantitative data, qualitative theories and explanations in the area of critical heat flux (CFF) is discussed. But, the authors do not consider the effect of temperature variations on the performance of pool boiling.
Abstract: Pool boiling is cost-effective, simple and prevalent amongst all available cooling schemes. The lack of quantitative data, qualitative theories and explanations in the area of critical heat flux (C...

8 citations

Journal ArticleDOI
TL;DR: The core idea is to obtain the local activity features assuming that all the input images are random fields, which essentially incorporates the local features of the image, and is then used to construct the fused image.
Abstract: In this paper, a novel yet simple, multi-sensor fusion technique realizes in spatial domain is proposed. The core idea is to obtain the local activity features assuming that all the input images are random fields. This local activity feature matrix, which essentially incorporates the local features of the image, is then used to construct the fused image. In the penultimate step of the proposed technique, the homogeneity of the final fused image is verified by the consistency verification process. The performance of the proposed technique is validated subjectively and objectively by extensive experiments on different multi-sensor images. Furthermore, the comparative analysis with state-of-the-art methods confirmed the escalating improvement of the proposed technique.

8 citations


Authors

Showing all 958 results

NameH-indexPapersCitations
Rajesh Kumar1494439140830
Anthony Atala125123560790
Rama Chellappa120103162865
Soebur Razzaque7731827790
Sanjay Singh71113322099
Rakesh Sharma6067314157
Richa Singh534229145
Vinothan N. Manoharan451329330
Madhu Dikshit432105327
S. Venugopal Rao412064635
Amit Mishra384015735
Surajit Das351853984
Prem Kalra332374151
Ankur Gupta312304000
Subhashish Banerjee302012710
Network Information
Related Institutions (5)
Indian Institute of Technology Delhi
26.9K papers, 503.8K citations

93% related

Indian Institute of Technology Kanpur
28.6K papers, 576.8K citations

93% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

92% related

Indian Institute of Technology Bombay
33.5K papers, 570.5K citations

92% related

Indian Institute of Science
62.4K papers, 1.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202320
202279
2021505
2020475
2019283
2018277