scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology, Jodhpur

EducationJodhpur, India
About: Indian Institute of Technology, Jodhpur is a education organization based out in Jodhpur, India. It is known for research contribution in the topics: Computer science & Welding. The organization has 914 authors who have published 2221 publications receiving 19243 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an analytical approach to determine jitter for a CMOS inverter in the presence of power supply noise (PSN) is presented, where the deviation in the transition edge of the output signal from its ideal timing is modeled accurately for each transition.
Abstract: This article presents an analytical approach to determine jitter for a CMOS inverter in the presence of power supply noise (PSN). The deviation in the transition edge of the output signal from its ideal timing is modeled accurately for each transition. A power series method is used to solve differential equations for different regions of transistors during output transition. The PSN has been expressed in Taylor series expression, aids to derive closed-form equation for time interval error (TIE). The obtained results from the proposed methodology closely match with electronic design automation (EDA) simulator results and verified on 40 nm Taiwan Semiconductor Manufacturing Company (TSMC) and 28 nm United Microelectronics Corporation (UMC) foundries, demonstrating accurate modeling of jitter.

11 citations

Book ChapterDOI
01 Jan 2017
TL;DR: A novel logo watermarking framework is proposed using non-linear chaotic map to generate keys to be used in the embedding process, which reveals the efficiency and robustness of the proposed framework.
Abstract: In this paper, a novel logo watermarking framework is proposed using non-linear chaotic map. The essence of proposed technique is to use chaotic map to generate keys to be used in the embedding process. Therefore, a method for generating keys is first proposed followed by the embedding process. A robust extraction process is then proposed to verify the presence of watermark from the possibly attacked watermarked image. Experimental results and attack analysis reveal the efficiency and robustness of the proposed framework.

11 citations

Proceedings ArticleDOI
06 Jul 2020
TL;DR: The proposed carry selection based accuracy configurable approximate adder is generic so that multiple accuracy levels are possible at design time and is considerably more accurate than the already proposed state of the art approximate adders.
Abstract: Approximate arithmetic circuits can be more effective if their accuracy can be controlled. In this paper, we propose a carry selection based accuracy configurable approximate adder. In the proposed design, longer carry chains provide better accuracy and CSU (Carry Select Unit) gives it better delay properties. The proposed design is generic so that multiple accuracy levels are possible at design time. Our experiments show that our design is considerably more accurate than the already proposed state of the art approximate adders. The latency of the proposed adder is also better than the state of the art adders.

11 citations

Journal ArticleDOI
TL;DR: In this paper, a facile and cost-effective approach to assemble metallic wires into two-dimensional and three-dimensional (3D) freestanding geometries by room-temperature welding is demonstrated.
Abstract: In this work, a facile and cost-effective approach to assemble metallic wires into two-dimensional (2D) and three-dimensional (3D) freestanding geometries by room-temperature welding is demonstrated. The low melting point of gallium (29.8 °C) enables the welding at room temperature without the aid of high-energy sources required for high-melting-point metals and alloys. The welding enables assembly of solid gallium wires into 2D and 3D geometries that could create freestanding architectures with multiple junctions along any inclined direction. These 2D and 3D freestanding metallic structures are freeze-cast in soft elastomers to obtain stretchable and soft devices: a 2D stretchable resistive and capacitive sensor patterned with parallel metal lines, a 2D stretchable capacitive sensor patterned with an interdigitated metal structure with capacitive changes on stretching in both x- and y-axes, and a 3D compressive sensor by assembly of liquid metal helices, which could sense foot pressure compression. We also developed a facile method to interconnect between soft circuits and external electronics, suppressing stress during mechanical deformation.

11 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a MoS2/ZnO hybrid exhibiting higher molecular detection at low operating temperature, where the ZnO film was grown using the magnetron sputtering technique, while MoS 2-PVP nanocomposites were synthesized through organic polymer assisted liquid exfoliation process.
Abstract: Over the past several decades, metal oxide based gas sensors are widely used for hydrogen gas sensing applications. However, their poor sensitivity and very high value of operating temperature (> 300 °C) pose a severe threat over hydrogen detection due to its highly flammable nature. In recent years, a few strategies have been explored by the researchers to address these formidable challenges faced by the sensing technology. Here, we present MoS2/ZnO hybrid exhibiting higher molecular detection at low operating temperature. The ZnO film was grown using the magnetron sputtering technique, while MoS2-PVP nanocomposites (MoS2-PVP NCs) were synthesized through organic polymer assisted liquid exfoliation process. We examined the sensing performance of various MoS2/ZnO hybrids prepared by the decoration of different concentration MoS2-PVP NCs over the ZnO surface. The decoration of ZnO film through MoS2-PVP NCs increases the effective surface area and the number of active sites for the hydrogen molecules to get adsorbed, hence improved the surface reactivity to gas molecules. Interestingly, a 5 mg/mL MoS2-PVP NCs decorated ZnO sensor showed an improvement of $\sim 8$ times in sensing response as compared to the pristine ZnO based sensor upon 50 ppm hydrogen exposure. The improvement in sensing ability is primarily ascribed to electronic sensitization and spillover effects. Our results establish that the MoS2/ZnO hybrid exhibit superior hydrogen sensing behavior indicating the prominent role of MoS2-PVP NCs in hydrogen detection.

11 citations


Authors

Showing all 958 results

NameH-indexPapersCitations
Rajesh Kumar1494439140830
Anthony Atala125123560790
Rama Chellappa120103162865
Soebur Razzaque7731827790
Sanjay Singh71113322099
Rakesh Sharma6067314157
Richa Singh534229145
Vinothan N. Manoharan451329330
Madhu Dikshit432105327
S. Venugopal Rao412064635
Amit Mishra384015735
Surajit Das351853984
Prem Kalra332374151
Ankur Gupta312304000
Subhashish Banerjee302012710
Network Information
Related Institutions (5)
Indian Institute of Technology Delhi
26.9K papers, 503.8K citations

93% related

Indian Institute of Technology Kanpur
28.6K papers, 576.8K citations

93% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

92% related

Indian Institute of Technology Bombay
33.5K papers, 570.5K citations

92% related

Indian Institute of Science
62.4K papers, 1.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202320
202279
2021505
2020475
2019283
2018277