scispace - formally typeset
Search or ask a question
Institution

Jet Propulsion Laboratory

FacilityLa Cañada Flintridge, California, United States
About: Jet Propulsion Laboratory is a facility organization based out in La Cañada Flintridge, California, United States. It is known for research contribution in the topics: Mars Exploration Program & Telescope. The organization has 8801 authors who have published 14333 publications receiving 548163 citations. The organization is also known as: JPL & NASA JPL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a simple model for the steady state evolution of debris disks due to collisions is developed and confronted with the properties of the emerging population of seven Sun-like stars that have hot dust at 10 AU (η Corvi and HD 72905); one has three Neptune mass planets at < 1 AU (HD 69830); all exhibit strong mid-IR silicate features.
Abstract: In this paper a simple model for the steady state evolution of debris disks due to collisions is developed and confronted with the properties of the emerging population of seven Sun-like stars that have hot dust at 10 AU (η Corvi and HD 72905); one has three Neptune mass planets at <1 AU (HD 69830); all exhibit strong mid-IR silicate features. We consider the most likely origin for this transient dust to be a dynamical instability that scattered planetesimals inward from a more distant planetesimal belt in an event akin to the late heavy bombardment in our own system, the dust being released from such planetesimals in collisions and sublimation.

359 citations

Journal ArticleDOI
TL;DR: In this paper, the authors calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone radiative forcings (RFs) of 410 mW m−2.
Abstract: . Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m−2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation) in RFs of ±17%. Three different radiation schemes were used – we find differences in RFs between schemes (for the same ozone fields) of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44±12%), nitrogen oxides (31 ± 9%), carbon monoxide (15 ± 3%) and non-methane volatile organic compounds (9 ± 2%); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m−2 DU−1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m−2; relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some coherent responses of ozone to climate change: decreases in the tropical lower troposphere, associated with increases in water vapour; and increases in the sub-tropical to mid-latitude upper troposphere, associated with increases in lightning and stratosphere-to-troposphere transport. Climate change has relatively small impacts on global mean tropospheric ozone RF.

356 citations

Journal ArticleDOI
17 Sep 1999-Science
TL;DR: Experiments with dissimilatory Fe-reducing bacteria of the genus Shewanella algae grown on a ferrihydrite substrate indicate that the delta(56)Fe of ferrous Fe in solution is isotopically lighter than the ferriHydrite substrate, and the range in delta( 56)Fe values of sedimentary rocks may reflect biogenic fractionation.
Abstract: The (56)Fe/(54)Fe of Fe-bearing phases precipitated in sedimentary environments varies by 2.5 per mil (delta(56)Fe values of +0.9 to -1. 6 per mil). In contrast, the (56)Fe/(54)Fe of Fe-bearing phases in igneous rocks from Earth and the moon does not vary measurably (delta(56)Fe = 0.0 +/- 0.3 per mil). Experiments with dissimilatory Fe-reducing bacteria of the genus Shewanella algae grown on a ferrihydrite substrate indicate that the delta(56)Fe of ferrous Fe in solution is isotopically lighter than the ferrihydrite substrate by 1.3 per mil. Therefore, the range in delta(56)Fe values of sedimentary rocks may reflect biogenic fractionation, and the isotopic composition of Fe may be used to trace the distribution of microorganisms in modern and ancient Earth.

356 citations

Journal ArticleDOI
TL;DR: The COSMOS weak lensing catalog as mentioned in this paper contains 3.9x10^5 galaxies with accurate shape measurements from the Advanced Camera for Surveys (ACS) data.
Abstract: With a primary goal of conducting precision weak lensing measurements from space, the COSMOS survey has imaged the largest contiguous area observed by the Hubble Space Telescope (HST) to date using the Advanced Camera for Surveys (ACS). This is the first paper in a series where we describe our strategy for addressing the various technical challenges in the production of weak lensing measurements from the COSMOS data. The COSMOS ACS catalog is constructed from 575 ACS/WFC tiles (1.64 deg^2) and contains a total 1.2x10^6 objects to a limiting magnitude of F814W=26.5. This catalog is made publicly available. The shapes of galaxies have been measured and corrected for the distortion induced by the time varying ACS Point Spread Function and for Charge Transfer Efficiency effects. Next, simulated images are used to derive the shear susceptibility factors that are necessary in order to transform shape measurements into unbiased shear estimators. Finally, for each galaxy, we derive a shape measurement error and utilize this quantity to extract the intrinsic shape noise of the galaxy sample. Interestingly, our results indicate that the intrinsic shape noise varies little with either size, magnitude or redshift. Representing a number density of 66 galaxies per arcmin^2, the final COSMOS weak lensing catalog contains 3.9x10^5 galaxies with accurate shape measurements. The properties of the COSMOS weak lensing catalog described throughout this paper will provide key input numbers for the preparation and design of next-generation wide field space missions.

355 citations


Authors

Showing all 9033 results

NameH-indexPapersCitations
B. P. Crill148486111895
George Helou14466296338
H. K. Eriksen141474104208
Charles R. Lawrence141528104948
W. C. Jones14039597629
Gianluca Morgante13847898223
Jean-Paul Kneib13880589287
Kevin M. Huffenberger13840293452
Robert H. Brown136117479247
Federico Capasso134118976957
Krzysztof M. Gorski132380105912
Olivier Doré130427104737
Mark E. Thompson12852777399
Clive Dickinson12350180701
Daniel Stern12178869283
Network Information
Related Institutions (5)
California Institute of Technology
146.6K papers, 8.6M citations

90% related

Goddard Space Flight Center
63.3K papers, 2.7M citations

90% related

Lawrence Livermore National Laboratory
48.1K papers, 1.9M citations

86% related

University of California, Santa Cruz
44.1K papers, 2.7M citations

85% related

University of Colorado Boulder
115.1K papers, 5.3M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023177
2022416
2021359
2020348
2019384
2018445