scispace - formally typeset
Search or ask a question
Institution

Jet Propulsion Laboratory

FacilityLa Cañada Flintridge, California, United States
About: Jet Propulsion Laboratory is a facility organization based out in La Cañada Flintridge, California, United States. It is known for research contribution in the topics: Mars Exploration Program & Telescope. The organization has 8801 authors who have published 14333 publications receiving 548163 citations. The organization is also known as: JPL & NASA JPL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors presented an overview of the recent science demonstration phase (SDP) observations of the Bullet cluster (z = 0.297) of the Herschel Lensing Survey (HLS).
Abstract: The Herschel Lensing Survey (HLS) will conduct deep PACS and SPIRE imaging of ∼40 massive clusters of galaxies. The strong gravitational lensing power of these clusters will enable us to penetrate through the confusion noise, which sets the ultimate limit on our ability to probe the Universe with Herschel. Here we present an overview of our survey and a summary of the major results from our science demonstration phase (SDP) observations of the Bullet cluster (z = 0.297). The SDP data are rich and allow us to study not only the background high-redshift galaxies (e.g., strongly lensed and distorted galaxies at z = 2.8 and 3.2) but also the properties of cluster-member galaxies. Our preliminary analysis shows a great diversity of far-infrared/submillimeter spectral energy distributions (SEDs), indicating that we have much to learn with Herschel about the properties of galaxy SEDs. We have also detected the Sunyaev-Zel’dovich (SZ) effect increment with the SPIRE data. The success of this SDP program demonstrates the great potential of the Herschel Lensing Survey to produce exciting results in a variety of science areas.

128 citations

Journal ArticleDOI
TL;DR: Spectralon, a commercially available diffuse reflectance material made from polytetrafluoroethylene (PTFE), is being evaluated for the multiangle imaging spectroradiometer (MISR), currently under development for the Earth Observing System.
Abstract: Spectralon, a commercially available diffuse reflectance material made from polytetrafluoroethylene (PTFE), is being evaluated for the multiangle imaging spectroradiometer (MISR), currently under development for the Earth Observing System. Results of a series of environmental exposure tests indicate that no degradation of the optical properties was apparent following proton bombardment, and stability through UV illumination was satisfactory, provided simple cleaning and handling procedures were implemented. A buildup of several thousand volts of static charge was found to develop while simulating a rare pass through an auroral storm.

128 citations

Journal ArticleDOI
TL;DR: In this paper, the first catalog of 67 strong galaxy-galaxy lens candidates discovered in the 1.64 square degree Hubble Space Telescope COSMOS survey is presented, restricted to massive early-type lens galaxies with arcs found at radii smaller than 5''.
Abstract: We present the first catalog of 67 strong galaxy-galaxy lens candidates discovered in the 1.64 square degree Hubble Space Telescope COSMOS survey. Twenty of these systems display multiple images or strongly curved large arcs. Our initial search is performed by visual inspection of the data and is restricted, for practical considerations, to massive early-type lens galaxies with arcs found at radii smaller than ~5''. Simple mass models are constructed for the best lens candidates and our results are compared to the strong lensing catalogs of the SLACS survey and the CASTLES database. These new strong galaxy-galaxy lensing systems constitute a valuable sample to study the mass distribution of early-type galaxies and their associated dark matter halos. We further expect this sample to play an important role in the testing of software algorithms designed to automatically search for strong gravitational lenses. From our analysis a robust lower limit is derived for the expected occurrence of strong galaxy-galaxy systems in current and future space-based wide-field imaging surveys. We expect that such surveys should uncover a large number of strong lensing systems (more than 10 systems per square degree), which will allow for a detailed statistical analysis of galaxy properties and will likely lead to constraints on models of gravitational structure formation and cosmology. The sample of strong lenses is available here: http://cosmosstronglensing.uni-hd.de/

128 citations

Journal ArticleDOI
TL;DR: In this paper, the link between observed ultraviolet (UV) luminosity, stellar mass and dust attenuation within rest-frame UV-selected samples at z ∼ 4, ∼ 3 and ∼ 1.5 was studied.
Abstract: We study the link between observed ultraviolet (UV) luminosity, stellar mass and dust attenuation within rest-frame UV-selected samples at z ∼ 4, ∼ 3 and ∼1.5. We measure by stacking at 250, 350 and 500 μm in the Herschel/Spectral and Photometric Imaging Receiver images from the Herschel Multi-Tiered Extragalactic Survey (HerMES) program the average infrared luminosity as a function of stellar mass and UV luminosity. We find that dust attenuation is mostly correlated with stellar mass. There is also a secondary dependence with UV luminosity: at a given UV luminosity, dust attenuation increases with stellar mass, while at a given stellar mass it decreases with UV luminosity. We provide new empirical recipes to correct for dust attenuation given the observed UV luminosity and the stellar mass. Our results also enable us to put new constraints on the average relation between star formation rate (SFR) and stellar mass at z ∼ 4, ∼3 and ∼1.5. The SFR–stellar mass relations are well described by power laws (SFR∝M^(0.7__∗), with the amplitudes being similar at z ∼ 4 and ∼3, and decreasing by a factor of 4 at z ∼ 1.5 at a given stellar mass. We further investigate the evolution with redshift of the specific SFR. Our results are in the upper range of previous measurements, in particular at z ∼ 3, and are consistent with a plateau at 3 < z < 4. Current model predictions (either analytic, semi-analytic or hydrodynamic) are inconsistent with these values, as they yield lower predictions than the observations in the redshift range we explore. We use these results to discuss the star formation histories of galaxies in the framework of the main sequence of star-forming galaxies. Our results suggest that galaxies at high redshift (2.5 < z < 4) stay around 1 Gyr on the main sequence. With decreasing redshift, this time increases such that z = 1 main-sequence galaxies with 108

128 citations

Journal ArticleDOI
TL;DR: The Moon Mineralogy Mapper (M3), a high-resolution, high-precision imaging spectrometer, flew on board India's Chandrayaan-1 Mission from October 2008 through August 2009 as mentioned in this paper.
Abstract: [1] The Moon Mineralogy Mapper (M3), a high-resolution, high-precision imaging spectrometer, flew on board India's Chandrayaan-1 Mission from October 2008 through August 2009. This paper describes some of the spatial sampling aspects of the instrument, the planned mission, and the mission as flown. We also outline the content and context of the resulting Level 1B spatial products that form part of the M3 archive. While designed and planned to operate for 2 years in a 100 km lunar orbit, M3 was able to meet its lunar coverage requirements despite the shortened mission; an increase of the orbit altitude to 200 km; and several relevant problems with spacecraft attitude, timing, and ephemeris. The unexpected spacecraft issues required us to invent a novel two-step approach for selenolocation. Leveraging newly available Lunar Reconnaissance Orbiter-Lunar Orbiter Laser Altimeter (LOLA) topography and an improved spacecraft ephemeris, we have created a method that permits us to bootstrap spacecraft attitude estimates from the image data themselves. This process performs a nonlinear optimization to honor a set of data-derived image-to-image tie points and image-to-LOLA control points. Error analysis of the final results suggests we have converged to a selenolocation result that has image-to-image root-mean-square (RMS) errors less than 200 m and image-to-LOLA RMS errors less than 450 m, despite using data-derived spacecraft attitude results. The Level 1B products include the lunar coordinates resulting from this inversion process and 10 relevant observational geometry parameters that fully characterize the ray tracing geometry on a pixel-by-pixel basis.

128 citations


Authors

Showing all 9033 results

NameH-indexPapersCitations
B. P. Crill148486111895
George Helou14466296338
H. K. Eriksen141474104208
Charles R. Lawrence141528104948
W. C. Jones14039597629
Gianluca Morgante13847898223
Jean-Paul Kneib13880589287
Kevin M. Huffenberger13840293452
Robert H. Brown136117479247
Federico Capasso134118976957
Krzysztof M. Gorski132380105912
Olivier Doré130427104737
Mark E. Thompson12852777399
Clive Dickinson12350180701
Daniel Stern12178869283
Network Information
Related Institutions (5)
California Institute of Technology
146.6K papers, 8.6M citations

90% related

Goddard Space Flight Center
63.3K papers, 2.7M citations

90% related

Lawrence Livermore National Laboratory
48.1K papers, 1.9M citations

86% related

University of California, Santa Cruz
44.1K papers, 2.7M citations

85% related

University of Colorado Boulder
115.1K papers, 5.3M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023177
2022416
2021359
2020348
2019384
2018445