scispace - formally typeset
Search or ask a question
Institution

Jet Propulsion Laboratory

FacilityLa Cañada Flintridge, California, United States
About: Jet Propulsion Laboratory is a facility organization based out in La Cañada Flintridge, California, United States. It is known for research contribution in the topics: Mars Exploration Program & Telescope. The organization has 8801 authors who have published 14333 publications receiving 548163 citations. The organization is also known as: JPL & NASA JPL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigate the magnetic instability in the context of core-collapse supernovae and find that the shear is strong at the boundary of the newly formed proto-neutron star and that the region within the stalled shock can be subject to strong MHD activity.
Abstract: We investigate the action of the magnetorotational instability (MRI) in the context of iron-core collapse. Exponential growth of the field on the timescale Ω-1 by the MRI will dominate the linear growth process of field-line "wrapping" with the same characteristic time. We examine a variety of initial rotation states, with solid-body rotation or a gradient in rotational velocity, that correspond to models in the literature. A relatively modest value of the initial rotation, a period of ~10 s, will give a very rapidly rotating proto-neutron star and hence strong differential rotation with respect to the infalling matter. We assume conservation of angular momentum on spherical shells. Rotational distortion and the dynamic feedback of the magnetic field are neglected in the subsequent calculation of rotational velocities. In our rotating and collapsing conditions, a seed field is expected to be amplified by the MRI and to grow exponentially to a saturation field. Results are discussed for two examples of saturation fields, a fiducial field that corresponds to vA = rΩ and a field that corresponds to the maximum growing mode of the MRI. We find, as expected, that the shear is strong at the boundary of the newly formed proto-neutron star and, unexpectedly, that the region within the stalled shock can be subject to strong MHD activity. Modest initial rotation velocities of the iron core result in sub-Keplerian rotation and a sub-equipartition magnetic field that nevertheless produce substantial MHD luminosity and hoop stresses: saturation fields of order 1015-1016 G can develop ~300 ms after bounce with an associated MHD luminosity of ~1052 ergs s-1. Bipolar flows driven by this MHD power can affect or even cause the explosions associated with core-collapse supernovae.

423 citations

Journal ArticleDOI
TL;DR: In this paper, a finite grid interpretation of the divergence equation is presented, which allows the current density and thus new local electric and magnetic field strengths to be determined directly from knowledge of charge motion.

423 citations

Journal ArticleDOI
TL;DR: In this article, an optical-IR photometric study of early-type galaxies in 19 galaxy clusters out to z = 0.9 was performed, showing that the color evolution of the early type galaxies becomes bluer with increasing redshift, consistent with the passive evolution of an old stellar population formed at an early cosmic epoch.
Abstract: We present results from an optical-IR photometric study of early-type galaxies in 19 galaxy clusters out to z=0.9. The galaxy sample is selected on the basis of morphologies determined from HST WFPC2 images, and is photometrically defined in the K-band to minimize redshift-dependent selection biases. The optical-IR colors of the early-type cluster galaxies become bluer with increasing redshift in a manner consistent with the passive evolution of an old stellar population formed at an early cosmic epoch. The degree of color evolution is similar for clusters at similar redshift, and does not depend strongly on the optical richness or X-ray luminosity of the cluster, suggesting that the history of early-type galaxies is relatively insensitive to environment. The slope of the color-magnitude relationship shows no significant change out to z=0.9, providing evidence that it arises from a correlation between galaxy mass and metallicity, not age. Finally, the intrinsic scatter in the optical-IR colors is small and nearly constant with redshift, indicating that the majority of giant, early-type galaxies in clusters share a common star formation history, with little perturbation due to uncorrelated episodes of later star formation. Taken together, our results are consistent with models in which most early-type galaxies in rich clusters are old, formed the majority of their stars at high redshift in a well-synchronized fashion, and evolved quiescently thereafter.

422 citations

Journal ArticleDOI
TL;DR: In this paper, a process-based treatment of ice supersaturation and ice nucleation is implemented in the National Center for Atmospheric Research Community Atmosphere Model (CAM), which is able to reproduce field observations of ice mass and mixed phase cloud occurrence better than previous versions.
Abstract: [1] A process-based treatment of ice supersaturation and ice nucleation is implemented in the National Center for Atmospheric Research Community Atmosphere Model (CAM). The new scheme is designed to allow (1) supersaturation with respect to ice, (2) ice nucleation by aerosol particles, and (3) ice cloud cover consistent with ice microphysics. The scheme is implemented with a two-moment microphysics code and is used to evaluate ice cloud nucleation mechanisms and supersaturation in CAM. The new model is able to reproduce field observations of ice mass and mixed phase cloud occurrence better than previous versions. The model is able to reproduce observed patterns and frequency of ice supersaturation. Simulations indicate homogeneous freezing of sulfate and heterogeneous freezing on dust are both important ice nucleation mechanisms, in different regions. Simulated cloud forcing and climate is sensitive to different formulations of the ice microphysics. Arctic surface radiative fluxes are sensitive to the parameterization of ice clouds. These results indicate that ice clouds are potentially an important part of understanding cloud forcing and potential cloud feedbacks, particularly in the Arctic.

420 citations

Journal ArticleDOI
TL;DR: In this paper, a projective-measurement scheme for generating the desired correlations between the interferometric input states in order to achieve Heisenberg-limited sensitivity is described.
Abstract: Heisenberg-limited measurement protocols can be used to gain an increase in measurement precision over classical protocols. Such measurements can be implemented using, for example, optical Mach—Zehnder interferometers and Ramsey spectroscopes. We address the formal equivalence between the Mach—Zehnder interferometer, the Ramsey spectroscope and a generic quantum logic circuit. Based on this equivalence we introduce the 'quantum Rosetta stone', and we describe a projective-measurement scheme for generating the desired correlations between the interferometric input states in order to achieve Heisenberg-limited sensitivity. The Rosetta stone then tells us that the same method should work in atom spectroscopy.

417 citations


Authors

Showing all 9033 results

NameH-indexPapersCitations
B. P. Crill148486111895
George Helou14466296338
H. K. Eriksen141474104208
Charles R. Lawrence141528104948
W. C. Jones14039597629
Gianluca Morgante13847898223
Jean-Paul Kneib13880589287
Kevin M. Huffenberger13840293452
Robert H. Brown136117479247
Federico Capasso134118976957
Krzysztof M. Gorski132380105912
Olivier Doré130427104737
Mark E. Thompson12852777399
Clive Dickinson12350180701
Daniel Stern12178869283
Network Information
Related Institutions (5)
California Institute of Technology
146.6K papers, 8.6M citations

90% related

Goddard Space Flight Center
63.3K papers, 2.7M citations

90% related

Lawrence Livermore National Laboratory
48.1K papers, 1.9M citations

86% related

University of California, Santa Cruz
44.1K papers, 2.7M citations

85% related

University of Colorado Boulder
115.1K papers, 5.3M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023177
2022416
2021359
2020348
2019384
2018445