scispace - formally typeset
Search or ask a question
Institution

Jet Propulsion Laboratory

FacilityLa Cañada Flintridge, California, United States
About: Jet Propulsion Laboratory is a facility organization based out in La Cañada Flintridge, California, United States. It is known for research contribution in the topics: Mars Exploration Program & Telescope. The organization has 8801 authors who have published 14333 publications receiving 548163 citations. The organization is also known as: JPL & NASA JPL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors studied the evolution of the dust temperature of galaxies in the SFR−M∗ plane up to z ~ 2 using far-infrared and submillimetre observations from the Herschel Space Observatory taken as part of the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time key programmes.
Abstract: We study the evolution of the dust temperature of galaxies in the SFR− M∗ plane up to z ~ 2 using far-infrared and submillimetre observations from the Herschel Space Observatory taken as part of the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time key programmes. Starting from a sample of galaxies with reliable star-formation rates (SFRs), stellar masses (M_∗) and redshift estimates, we grid the SFR− M_∗parameter space in several redshift ranges and estimate the mean dust temperature (T_(dust)) of each SFR–M_∗ − z bin. Dust temperatures are inferred using the stacked far-infrared flux densities (100–500 μm) of our SFR–M_∗ − z bins. At all redshifts, the dust temperature of galaxies smoothly increases with rest-frame infrared luminosities (L_(IR)), specific SFRs (SSFR; i.e., SFR/M_∗), and distances with respect to the main sequence (MS) of the SFR− M_∗ plane (i.e., Δlog (SSFR)_(MS) = log [SSFR(galaxy)/SSFR_(MS)(M_∗,z)]). The T_(dust) − SSFR and T_(dust) − Δlog (SSFR)_(MS) correlations are statistically much more significant than the T_(dust) − LIR one. While the slopes of these three correlations are redshift-independent, their normalisations evolve smoothly from z = 0 and z ~ 2. We convert these results into a recipe to derive T_(dust) from SFR, M_∗ and z, valid out to z ~ 2 and for the stellar mass and SFR range covered by our stacking analysis. The existence of a strong T_(dust) − Δlog (SSFR)_(MS) correlation provides us with several pieces of information on the dust and gas content of galaxies. Firstly, the slope of the T_(dust) − Δlog (SSFR)_(MS) correlation can be explained by the increase in the star-formation efficiency (SFE; SFR/M_(gas)) with Δlog (SSFR)_(MS) as found locally by molecular gas studies. Secondly, at fixed Δlog (SSFR)_(MS), the constant dust temperature observed in galaxies probing wide ranges in SFR and M_∗ can be explained by an increase or decrease in the number of star-forming regions with comparable SFE enclosed in them. And thirdly, at high redshift, the normalisation towards hotter dust temperature of the T_(dust) − Δlog (SSFR)_(MS) correlation can be explained by the decrease in the metallicities of galaxies or by the increase in the SFE of MS galaxies. All these results support the hypothesis that the conditions prevailing in the star-forming regions of MS and far-above-MS galaxies are different. MS galaxies have star-forming regions with low SFEs and thus cold dust, while galaxies situated far above the MS seem to be in a starbursting phase characterised by star-forming regions with high SFEs and thus hot dust.

257 citations

Journal ArticleDOI
TL;DR: The recent increase of atmospheric methane is investigated by using two atmospheric inversions to quantify the distribution of sources and sinks for the 2006-2008 period, and a process-based model of methane emissions by natural wetland ecosystems.
Abstract: The recent increase of atmospheric methane is investigated by using two atmospheric inversions to quantify the distribution of sources and sinks for the 2006–2008 period, and a process-based model of methane emissions by natural wetland ecosystems. Methane emissions derived from the two inversions are consistent at a global scale: emissions are decreased in 2006 (−7 Tg) and increased in 2007 (+21 Tg) and 2008 (+18 Tg), as compared to the 1999–2006 period. The agreement on the latitudinal partition of the flux anomalies for the two inversions is fair in 2006, good in 2007, and not good in 2008. In 2007, a positive anomaly of tropical emissions is found to be the main contributor to the global emission anomalies (~60–80%) for both inversions, with a dominant share attributed to natural wetlands (~2/3), and a significant contribution from high latitudes (~25%). The wetland ecosystem model produces smaller and more balanced positive emission anomalies between the tropics and the high latitudes for 2006, 2007 and 2008, mainly due to precipitation changes during these years. At a global scale, the agreement between the ecosystem model and the inversions is good in 2008 but not satisfying in 2006 and 2007. Tropical South America and Boreal Eurasia appear to be major contributors to variations in methane emissions consistently in the inversions and the ecosystem model. Finally, changes in OH radicals during 2006–2008 are found to be less than 1% in inversions, with only a small impact on the inferred methane emissions.

256 citations

Journal ArticleDOI
TL;DR: In this paper, the companion star in the 2.4 in (340 AU) pre-main sequence binary system is shown to be an entirely nebulous object at visual wavelengths.
Abstract: Hubble Space Telescope images of HK Tauri reveal that the companion star in this 2.4 in (340 AU) pre-main sequence binary system is an entirely nebulous object at visual wavelengths.

256 citations

Journal ArticleDOI
TL;DR: In this paper, the SAGE-SMC (Surveying the Agents of Galaxy Evolution in the Tidally stripped, low metallicity Small Magellanic Cloud) Spitzer Legacy program was used to study the amount and type of dust in the present interstellar medium.
Abstract: The Small Magellanic Cloud (SMC) provides a unique laboratory for the study of the lifecycle of dust given its low metallicity (~1/5 solar) and relative proximity (~60 kpc). This motivated the SAGE-SMC (Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud) Spitzer Legacy program with the specific goals of studying the amount and type of dust in the present interstellar medium, the sources of dust in the winds of evolved stars, and how much dust is consumed in star formation. This program mapped the full SMC (30 deg^2) including the body, wing, and tail in seven bands from 3.6 to 160 μm using IRAC and MIPS on the Spitzer Space Telescope. The data were reduced and mosaicked, and the point sources were measured using customized routines specific for large surveys. We have made the resulting mosaics and point-source catalogs available to the community. The infrared colors of the SMC are compared to those of other nearby galaxies and the 8 μm/24 μm ratio is somewhat lower than the average and the 70 μm/160 μm ratio is somewhat higher than the average. The global infrared spectral energy distribution (SED) shows that the SMC has approximately 1/3 the aromatic emission/polycyclic aromatic hydrocarbon abundance of most nearby galaxies. Infrared color-magnitude diagrams are given illustrating the distribution of different asymptotic giant branch stars and the locations of young stellar objects. Finally, the average SED of H II/star formation regions is compared to the equivalent Large Magellanic Cloud average H II/star formation region SED. These preliminary results will be expanded in detail in subsequent papers.

255 citations

01 Jul 2007
TL;DR: Observations of radar speckle patterns tied to the rotation of Mercury establish that the planet occupies a Cassini state with obliquity of 2.11 ± 0.1 arc minutes, and indicate that the mantle of Mercury is decoupled from a core that is at least partially molten.
Abstract: Observations of radar speckle patterns tied to the rotation of Mercury establish that the planet occupies a Cassini state with obliquity of 2.11 ± 0.1 arc minutes. The measurements show that the planet exhibits librations in longitude that are forced at the 88-day orbital period, as predicted by theory. The large amplitude of the oscillations, 35.8 ± 2 arc seconds, together with the Mariner 10 determination of the gravitational harmonic coefficient C22, indicates that the mantle of Mercury is decoupled from a core that is at least partially molten.

255 citations


Authors

Showing all 9033 results

NameH-indexPapersCitations
B. P. Crill148486111895
George Helou14466296338
H. K. Eriksen141474104208
Charles R. Lawrence141528104948
W. C. Jones14039597629
Gianluca Morgante13847898223
Jean-Paul Kneib13880589287
Kevin M. Huffenberger13840293452
Robert H. Brown136117479247
Federico Capasso134118976957
Krzysztof M. Gorski132380105912
Olivier Doré130427104737
Mark E. Thompson12852777399
Clive Dickinson12350180701
Daniel Stern12178869283
Network Information
Related Institutions (5)
California Institute of Technology
146.6K papers, 8.6M citations

90% related

Goddard Space Flight Center
63.3K papers, 2.7M citations

90% related

Lawrence Livermore National Laboratory
48.1K papers, 1.9M citations

86% related

University of California, Santa Cruz
44.1K papers, 2.7M citations

85% related

University of Colorado Boulder
115.1K papers, 5.3M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023177
2022416
2021359
2020348
2019384
2018445