scispace - formally typeset
Search or ask a question
Institution

Jet Propulsion Laboratory

FacilityLa Cañada Flintridge, California, United States
About: Jet Propulsion Laboratory is a facility organization based out in La Cañada Flintridge, California, United States. It is known for research contribution in the topics: Mars Exploration Program & Telescope. The organization has 8801 authors who have published 14333 publications receiving 548163 citations. The organization is also known as: JPL & NASA JPL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors demonstrate optical frequency combs using the fluorite whispering gallery mode resonator as a nonlinear Kerr medium and two regimes of generation are observed, giving the record low repetition rate of 13 GHz, equal to the cavity's free spectral range (FSR) or high repetition rates of multiples of cavity FSR.
Abstract: We demonstrate optical frequency combs using the fluorite whispering gallery mode resonator as a nonlinear Kerr medium. Two regimes of generation are observed, giving the record low repetition rate of 13 GHz, equal to the cavity's free spectral range (FSR) or high repetition rates of multiples of cavity FSR. An intermediate regime was also observed. Raman lasing spectrum similar to modulation instability in fibers was observed for the first time to the best of our knowledge.

232 citations

Journal ArticleDOI
TL;DR: In this article, the first major release of the OCO2 retrieval algorithm (B7r) and X_(CO2) from OCO-2's primary ground-based validation network: the Total Carbon Column Observing Network (TCCON) were compared.
Abstract: NASA's Orbiting Carbon Observatory-2 (OCO-2) has been measuring carbon dioxide column-averaged dry-air mole fraction, X_(CO_2), in the Earth's atmosphere for over 2 years. In this paper, we describe the comparisons between the first major release of the OCO-2 retrieval algorithm (B7r) and X_(CO2) from OCO-2's primary ground-based validation network: the Total Carbon Column Observing Network (TCCON). The OCO-2 X_(CO_2) retrievals, after filtering and bias correction, agree well when aggregated around and coincident with TCCON data in nadir, glint, and target observation modes, with absolute median differences less than 0.4 ppm and RMS differences less than 1.5 ppm. After bias correction, residual biases remain. These biases appear to depend on latitude, surface properties, and scattering by aerosols. It is thus crucial to continue measurement comparisons with TCCON to monitor and evaluate the OCO-2 X_(CO_2) data quality throughout its mission.

232 citations

Journal ArticleDOI
TL;DR: A recently introduced power spectrum estimation technique based on Gibbs sampling is revisited, with the goal of applying it to the high-resolution WMAP data and establishing the Markov chain correlation length as a function of signal-to-noise ratio.
Abstract: We revisit a recently introduced power spectrum estimation technique based on Gibbs sampling, with the goal of applying it to the high-resolution WMAP data. In order to facilitate this analysis, a number of sophistications have to be introduced, each of which is discussed in detail. We have implemented two independent versions of the algorithm to cross-check the computer codes and to verify that a particular solution to any given problem does not affect the scientific results. We then apply these programs to simulated data with known properties at intermediate (Nside = 128) and high (Nside = 512) resolutions, to study effects such as incomplete sky coverage and white versus correlated noise. From these simulations we also establish the Markov chain correlation length as a function of signal-to-noise ratio and give a few comments on the properties of the correlation matrices involved. Parallelization issues are also discussed, with emphasis on real-world limitations imposed by current supercomputer facilities. The scientific results from the analysis of the first-year WMAP data are presented in a companion letter.

232 citations

Journal ArticleDOI
TL;DR: In this paper, the authors quantified mean annual and monthly fluxes of Earth's water cycle over continents and ocean basins during the first decade of the millennium, using satellite measurements first and data-integrating models second.
Abstract: This study quantifies mean annual and monthly fluxes of Earth's water cycle over continents and ocean basins during the first decade of the millennium. To the extent possible, the flux estimates are based on satellite measurements first and data-integrating models second. A careful accounting of uncertainty in the estimates is included. It is applied within a routine that enforces multiple water and energy budget constraints simultaneously in a variational framework in order to produce objectively determined optimized flux estimates. In the majority of cases, the observed annual surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are negligible. Fluxes were poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian islands, leading to reliance on atmospheric analysis estimates. Many of the satellite systems that contributed data have been or will soon be lost or replaced. Models that integrate ground-based and remote observations will be critical for ameliorating gaps and discontinuities in the data records caused by these transitions. Continued development of such models is essential for maximizing the value of the observations. Next-generation observing systems are the best hope for significantly improving global water budget accounting.

231 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported the discovery of four field methane ("T"-type) brown dwarfs using Two Micron All-Sky Survey (2MASS) data and one additional field methane dwarf, previously discovered by the Sloan Digital Sky Survey (SDS) was also identified.
Abstract: We report the discovery of four field methane ("T"-type) brown dwarfs using Two Micron All-Sky Survey (2MASS) data. One additional methane dwarf, previously discovered by the Sloan Digital Sky Survey, was also identified. Near-infrared spectra clearly show the 1.6 and 2.2 μm CH_4 absorption bands characteristic of objects with T_(eff) ≾ 1300 K as well as broadened H_2O bands at 1.4 and 1.9 μm. Comparing the spectra of these objects with that of Gl 229B, we propose that all new 2MASS T dwarfs are warmer than 950 K, in order from warmest to coolest: 2MASS J1217-03, 2MASS J1225-27, 2MASS J1047+21, and 2MASS J1237+65. Based on this preliminary sample, we find a warm T dwarf surface density of 0.0022 T dwarfs deg^(-2), or ~90 warm T dwarfs over the whole sky detectable to J < 16. The resulting space density upper limit, 0.01 T dwarfs pc^(-3), is comparable to that of the first L dwarf sample from Kirkpatrick et al.

231 citations


Authors

Showing all 9033 results

NameH-indexPapersCitations
B. P. Crill148486111895
George Helou14466296338
H. K. Eriksen141474104208
Charles R. Lawrence141528104948
W. C. Jones14039597629
Gianluca Morgante13847898223
Jean-Paul Kneib13880589287
Kevin M. Huffenberger13840293452
Robert H. Brown136117479247
Federico Capasso134118976957
Krzysztof M. Gorski132380105912
Olivier Doré130427104737
Mark E. Thompson12852777399
Clive Dickinson12350180701
Daniel Stern12178869283
Network Information
Related Institutions (5)
California Institute of Technology
146.6K papers, 8.6M citations

90% related

Goddard Space Flight Center
63.3K papers, 2.7M citations

90% related

Lawrence Livermore National Laboratory
48.1K papers, 1.9M citations

86% related

University of California, Santa Cruz
44.1K papers, 2.7M citations

85% related

University of Colorado Boulder
115.1K papers, 5.3M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023177
2022416
2021359
2020348
2019384
2018445