scispace - formally typeset
Open AccessJournal ArticleDOI

Comparative Analysis between Homoeologous Genome Segments of Brassica napus and Its Progenitor Species Reveals Extensive Sequence-Level Divergence

TLDR
The considerable variation that the authors observed, even between the different versions of the same Brassica genome, for gene fragments and annotated putative genes suggest that the concept of the pan-genome might be particularly appropriate when considering Brassica genomes.
Abstract
Homoeologous regions of Brassica genomes were analyzed at the sequence level. These represent segments of the Brassica A genome as found in Brassica rapa and Brassica napus and the corresponding segments of the Brassica C genome as found in Brassica oleracea and B. napus. Analysis of synonymous base substitution rates within modeled genes revealed a relatively broad range of times (0.12 to 1.37 million years ago) since the divergence of orthologous genome segments as represented in B. napus and the diploid species. Similar, and consistent, ranges were also identified for single nucleotide polymorphism and insertion-deletion variation. Genes conserved across the Brassica genomes and the homoeologous segments of the genome of Arabidopsis thaliana showed almost perfect collinearity. Numerous examples of apparent transduplication of gene fragments, as previously reported in B. oleracea, were observed in B. rapa and B. napus, indicating that this phenomenon is widespread in Brassica species. In the majority of the regions studied, the C genome segments were expanded in size relative to their A genome counterparts. The considerable variation that we observed, even between the different versions of the same Brassica genome, for gene fragments and annotated putative genes suggest that the concept of the pan-genome might be particularly appropriate when considering Brassica genomes.

read more

Citations
More filters
Journal ArticleDOI

Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome

Boulos Chalhoub, +86 more
- 22 Aug 2014 - 
TL;DR: The polyploid genome of Brassica napus, which originated from a recent combination of two distinct genomes approximately 7500 years ago and gave rise to the crops of rape oilseed, is sequenced.
Journal ArticleDOI

The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes

Shengyi Liu, +84 more
TL;DR: A draft genome sequence of Brassica oleracea is described, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks.
Journal ArticleDOI

Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus

TL;DR: In this paper, the authors conducted a cytological investigation of 50 resynthesized Brassica napus allopolyploids across generations S0:1 to S5:6 and in the S10:11 generation.
References
More filters
Journal ArticleDOI

MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0

TL;DR: Version 4 of MEGA software expands on the existing facilities for editing DNA sequence data from autosequencers, mining Web-databases, performing automatic and manual sequence alignment, analyzing sequence alignments to estimate evolutionary distances, inferring phylogenetic trees, and testing evolutionary hypotheses.
Journal ArticleDOI

Clustal W and Clustal X version 2.0

TL;DR: The Clustal W and ClUSTal X multiple sequence alignment programs have been completely rewritten in C++ to facilitate the further development of the alignment algorithms in the future and has allowed proper porting of the programs to the latest versions of Linux, Macintosh and Windows operating systems.
Journal ArticleDOI

PAML 4: Phylogenetic Analysis by Maximum Likelihood

TL;DR: PAML, currently in version 4, is a package of programs for phylogenetic analyses of DNA and protein sequences using maximum likelihood (ML), which can be used to estimate parameters in models of sequence evolution and to test interesting biological hypotheses.
Journal ArticleDOI

Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.

TL;DR: This is the first complete genome sequence of a plant and provides the foundations for more comprehensive comparison of conserved processes in all eukaryotes, identifying a wide range of plant-specific gene functions and establishing rapid systematic ways to identify genes for crop improvement.
Related Papers (5)

The genome of the mesopolyploid crop species Brassica rapa

Xiaowu Wang, +116 more
- 01 Oct 2011 -