scispace - formally typeset
Search or ask a question
Institution

Santa Fe Institute

NonprofitSanta Fe, New Mexico, United States
About: Santa Fe Institute is a nonprofit organization based out in Santa Fe, New Mexico, United States. It is known for research contribution in the topics: Population & Context (language use). The organization has 558 authors who have published 4558 publications receiving 396015 citations. The organization is also known as: SFI.


Papers
More filters
Journal ArticleDOI
TL;DR: The standard central limit theorem plays a fundamental role in Boltzmann-Gibbs statistical mechanics and has been successfully applied to a considerable amount of physically interesting complex phenomena as mentioned in this paper.
Abstract: The standard central limit theorem plays a fundamental role in Boltzmann-Gibbs statistical mechanics. This important physical theory has been generalized [1] in 1988 by using the entropy \(S_{q} = \frac{1-\sum_{i} p^{q}_{i}}{q-1}\)\(({\rm with}\,q\,\in {{{\mathcal{R}}}})\) instead of its particular BG case \(S_{1} = S_{BG} = - \sum_{i} p_{i}\,{\rm ln}\,p_{i}\). The theory which emerges is usually referred to as nonextensive statistical mechanics and recovers the standard theory for q = 1. During the last two decades, this q-generalized statistical mechanics has been successfully applied to a considerable amount of physically interesting complex phenomena. A conjecture[2] and numerical indications available in the literature have been, for a few years, suggesting the possibility of q-versions of the standard central limit theorem by allowing the random variables that are being summed to be strongly correlated in some special manner, the case q= 1 corresponding to standard probabilistic independence. This is what we prove in the present paper for \(1{\leqslant}\,q 0\), and normalizing constant Cq. These distributions, sometimes referred to as q-Gaussians, are known to make, under appropriate constraints, extremal the functional Sq (in its continuous version). Their q = 1 and q = 2 particular cases recover respectively Gaussian and Cauchy distributions.

312 citations

Journal ArticleDOI
TL;DR: It is shown that population structure is indeed self-similar or fractal-like with the number of individuals or groups belonging to each successively higher level of organization exhibiting a constant ratio close to 4, and suggested that human social networks self-organize in response to similar optimization principles found behind the formation of many complex systems in nature.
Abstract: In nature, many different types of complex system form hierarchical, self-similar or fractal-like structures that have evolved to maximize internal efficiency. In this paper, we ask whether hunter-gatherer societies show similar structural properties. We use fractal network theory to analyse the statistical structure of 1189 social groups in 339 hunter-gatherer societies from a published compilation of ethnographies. We show that population structure is indeed self-similar or fractal-like with the number of individuals or groups belonging to each successively higher level of organization exhibiting a constant ratio close to 4. Further, despite the wide ecological, cultural and historical diversity of hunter-gatherer societies, this remarkable self-similarity holds both within and across cultures and continents. We show that the branching ratio is related to density-dependent reproduction in complex environments and hypothesize that the general pattern of hierarchical organization reflects the self-similar properties of the networks and the underlying cohesive and disruptive forces that govern the flow of material resources, genes and non-genetic information within and between social groups. Our results offer insight into the energetics of human sociality and suggest that human social networks self-organize in response to similar optimization principles found behind the formation of many complex systems in nature.

310 citations

Journal ArticleDOI
TL;DR: Understanding cancer as a breakdown of multicellular cooperation provides novel insights into cancer hallmarks and suggests a set of assays and biomarkers that can be applied across species and characterize the fundamental requirements for generating a cancer.
Abstract: Multicellularity is characterized by cooperation among cells for the development, maintenance and reproduction of the multicellular organism. Cancer can be viewed as cheating within this cooperative multicellular system. Complex multicellularity, and the cooperation underlying it, has evolved independently multiple times. We review the existing literature on cancer and cancer-like phenomena across life, not only focusing on complex multicellularity but also reviewing cancer-like phenomena across the tree of life more broadly. We find that cancer is characterized by a breakdown of the central features of cooperation that characterize multicellularity, including cheating in proliferation inhibition, cell death, division of labour, resource allocation and extracellular environment maintenance (which we term the five foundations of multicellularity). Cheating on division of labour, exhibited by a lack of differentiation and disorganized cell masses, has been observed in all forms of multicellularity. This suggests that deregulation of differentiation is a fundamental and universal aspect of carcinogenesis that may be underappreciated in cancer biology. Understanding cancer as a breakdown of multicellular cooperation provides novel insights into cancer hallmarks and suggests a set of assays and biomarkers that can be applied across species and characterize the fundamental requirements for generating a cancer.

310 citations

Journal ArticleDOI
TL;DR: It is found that most urban indicators scale linearly with city size, regardless of the definition of the urban boundaries, however, when nonlinear correlations are present, the exponent fluctuates considerably.
Abstract: Cities can be characterized and modelled through different urban measures. Consistency within these observables is crucial in order to advance towards a science of cities. Bettencourt et al. have proposed that many of these urban measures can be predicted through universal scaling laws. We develop a framework to consistently define cities, using commuting to work and population density thresholds, and construct thousands of realizations of systems of cities with different boundaries for England and Wales. These serve as a laboratory for the scaling analysis of a large set of urban indicators. The analysis shows that population size alone does not provide us enough information to describe or predict the state of a city as previously proposed, indicating that the expected scaling laws are not corroborated. We found that most urban indicators scale linearly with city size, regardless of the definition of the urban boundaries. However, when nonlinear correlations are present, the exponent fluctuates considerably.

309 citations

Journal ArticleDOI
TL;DR: A comprehensive comparative study of all known miRNA families in animals is presented in this paper. But the study is limited to animals and does not consider the role of microRNA precursors in the evolution of animals.
Abstract: MicroRNAs have been identified as crucial regulators in both animals and plants. Here we report on a comprehensive comparative study of all known miRNA families in animals. We expand the MicroRNA Registry 6.0 by more than 1000 new homologs of miRNA precursors whose expression has been verified in at least one species. Using this uniform data basis we analyze their evolutionary history in terms of individual gene phylogenies and in terms of preservation of genomic nearness across species. This allows us to reliably identify microRNA clusters that are derived from a common transcript. We identify three episodes of microRNA innovation that correspond to major developmental innovations: A class of about 20 miRNAs is common to protostomes and deuterostomes and might be related to the advent of bilaterians. A second large wave of innovations maps to the branch leading to the vertebrates. The third significant outburst of miRNA innovation coincides with placental (eutherian) mammals. In addition, we observe the expected expansion of the microRNA inventory due to genome duplications in early vertebrates and in an ancestral teleost. The non-local duplications in the vertebrate ancestor are predated by local (tandem) duplications leading to the formation of about a dozen ancient microRNA clusters. Our results suggest that microRNA innovation is an ongoing process. Major expansions of the metazoan miRNA repertoire coincide with the advent of bilaterians, vertebrates, and (placental) mammals.

308 citations


Authors

Showing all 606 results

NameH-indexPapersCitations
James Hone127637108193
James H. Brown12542372040
Alan S. Perelson11863266767
Mark Newman117348168598
Bette T. Korber11739249526
Marten Scheffer11135073789
Peter F. Stadler10390156813
Sanjay Jain10388146880
Henrik Jeldtoft Jensen102128648138
Dirk Helbing10164256810
Oliver G. Pybus10044745313
Andrew P. Dobson9832244211
Carel P. van Schaik9432926908
Seth Lloyd9249050159
Andrew W. Lo8537851440
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

University of Oxford
258.1K papers, 12.9M citations

90% related

Princeton University
146.7K papers, 9.1M citations

89% related

Max Planck Society
406.2K papers, 19.5M citations

89% related

University of California, Berkeley
265.6K papers, 16.8M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202341
202241
2021297
2020309
2019263
2018231