scispace - formally typeset
Search or ask a question
Institution

Santa Fe Institute

NonprofitSanta Fe, New Mexico, United States
About: Santa Fe Institute is a nonprofit organization based out in Santa Fe, New Mexico, United States. It is known for research contribution in the topics: Population & Context (language use). The organization has 558 authors who have published 4558 publications receiving 396015 citations. The organization is also known as: SFI.


Papers
More filters
Journal ArticleDOI
TL;DR: The last decade has seen a staggering transformation in the authors' knowledge of microbial communities, and seven short pieces speculate as to what the next ten years might hold in store.
Abstract: The development of high-throughput sequencing technologies has transformed our capacity to investigate the composition and dynamics of the microbial communities that populate diverse habitats. Over the past decade, these advances have yielded an avalanche of metagenomic data. The current stage of “van Leeuwenhoek”–like cataloguing, as well as functional analyses, will likely accelerate as DNA and RNA sequencing, plus protein and metabolic profiling capacities and computational tools, continue to improve. However, it is time to consider: what’s next for microbiome research? The short pieces included here briefly consider the challenges and opportunities awaiting microbiome research.

155 citations

Journal ArticleDOI
TL;DR: This paper presents a comprehensive theory of large scale learning with Deep Neural Networks (DNN), when optimized with Stochastic Gradient Decent (SGD), built on three theoretical components.
Abstract: The practical successes of deep neural networks have not been matched by theoretical progress that satisfyingly explains their behavior. In this work, we study the information bottleneck (IB) theory of deep learning, which makes three specific claims: first, that deep networks undergo two distinct phases consisting of an initial fitting phase and a subsequent compression phase; second, that the compression phase is causally related to the excellent generalization performance of deep networks; and third, that the compression phase occurs due to the diffusion-like behavior of stochastic gradient descent. Here we show that none of these claims hold true in the general case. Through a combination of analytical results and simulation, we demonstrate that the information plane trajectory is predominantly a function of the neural nonlinearity employed: double-sided saturating nonlinearities like tanh yield a compression phase as neural activations enter the saturation regime, but linear activation functions and single-sided saturating nonlinearities like the widely used ReLU in fact do not. Moreover, we find that there is no evident causal connection between compression and generalization: networks that do not compress are still capable of generalization, and vice versa. Next, we show that the compression phase, when it exists, does not arise from stochasticity in training by demonstrating that we can replicate the IB findings using full batch gradient descent rather than stochastic gradient descent. Finally, we show that when an input domain consists of a subset of task-relevant and task-irrelevant information, hidden representations do compress the task-irrelevant information, although the overall information about the input may monotonically increase with training time, and that this compression happens concurrently with the fitting process rather than during a subsequent compression period.

154 citations

Journal ArticleDOI
TL;DR: The method confirms the known structures in HIV-1 and predicts previously unknown conserved RNA secondary structures in HCV, and can be used for small data sets of approximately 10 sequences, efficiently exploiting the information contained in the sequence variability.
Abstract: We propose a new method for detecting conserved RNA secondary structures in a family of related RNA sequences. Our method is based on a combination of thermodynamic structure prediction and phylogenetic comparison. In contrast to purely phylogenetic methods, our algorithm can be used for small data sets of approximately 10 sequences, efficiently exploiting the information contained in the sequence variability. The procedure constructs a prediction only for those parts of sequences that are consistent with a single conserved structure. Our implementation produces reasonable consensus structures without user interference. As an example we have analysed the complete HIV-1 and hepatitis C virus (HCV) genomes as well as the small segment of hantavirus. Our method confirms the known structures in HIV-1 and predicts previously unknown conserved RNA secondary structures in HCV.

154 citations

Journal ArticleDOI
TL;DR: This paper examines relatedness in group structured modes, in which a trait affects the fitness of all group members and recognizes the distinction between these trait types, resolving some apparent contradictions in the literature and clarifying the limits of some previous results.

154 citations

Journal ArticleDOI
TL;DR: It is shown that with any heterogeneity in time preferences, every Pareto efficient and non-dictatorial method of aggregating utility functions must be time-inconsistent.
Abstract: We study collective decisions by time-discounting individuals choosing a common consumption stream. We show that with any heterogeneity in time preferences, every Pareto efficient and non-dictatorial method of aggregating utility functions must be time-inconsistent. We also show that decisions made via non-dictatorial voting methods are intransitive.

154 citations


Authors

Showing all 606 results

NameH-indexPapersCitations
James Hone127637108193
James H. Brown12542372040
Alan S. Perelson11863266767
Mark Newman117348168598
Bette T. Korber11739249526
Marten Scheffer11135073789
Peter F. Stadler10390156813
Sanjay Jain10388146880
Henrik Jeldtoft Jensen102128648138
Dirk Helbing10164256810
Oliver G. Pybus10044745313
Andrew P. Dobson9832244211
Carel P. van Schaik9432926908
Seth Lloyd9249050159
Andrew W. Lo8537851440
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

University of Oxford
258.1K papers, 12.9M citations

90% related

Princeton University
146.7K papers, 9.1M citations

89% related

Max Planck Society
406.2K papers, 19.5M citations

89% related

University of California, Berkeley
265.6K papers, 16.8M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202341
202241
2021297
2020309
2019263
2018231