scispace - formally typeset
Search or ask a question
Institution

Special Astrophysical Observatory

FacilityNizhniy Arkhyz, Russia
About: Special Astrophysical Observatory is a facility organization based out in Nizhniy Arkhyz, Russia. It is known for research contribution in the topics: Galaxy & Stars. The organization has 651 authors who have published 1226 publications receiving 30580 citations.


Papers
More filters
Journal ArticleDOI
A. A. Abdo1, A. A. Abdo2, Markus Ackermann3, Ivan Agudo4  +270 moreInstitutions (51)
Abstract: We have conducted a detailed investigation of the broadband spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray/gamma-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log nu-log nu F-nu representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low-and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, alpha(ro), and optical to X-ray, alpha(ox), spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency (nu(S)(peak)) is positioned between 10(12.5) and 10(14.5) Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10(13) and 10(17) Hz in featureless BL Lacertae objects. We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked (HBL) BL Lacs are detected in the LBAS sample, only less than 13% of known bright FSRQs and LBL BL Lacs are included. This suggests that the latter sources, as a class, may be much fainter gamma-ray emitters than LBAS blazars, and could in fact radiate close to the expectations of simple SSC models. We categorized all our sources according to a new physical classification scheme based on the generally accepted paradigm for Active Galactic Nuclei and on the results of this SED study. Since the LAT detector is more sensitive to flat spectrum gamma-ray sources, the correlation between nu(S)(peak) and gamma-ray spectral index strongly favors the detection of high energy peaked blazars, thus explaining the Fermi overabundance of this type of sources compared to radio and EGRET samples. This selection effect is similar to that experienced in the soft X-ray band where HBL BL Lacs are the dominant type of blazars.

882 citations

Journal ArticleDOI
TL;DR: The ALFALFA project as discussed by the authors uses a two-pass, minimum intrusion, drift scan observing technique that samples the same region of sky at two separate epochs to aid in the discrimination of cosmic signals from noise and terrestrial interference.
Abstract: The recently initiated Arecibo Legacy Fast ALFA (ALFALFA) survey aims to map ~7000 deg2 of the high Galactic latitude sky visible from Arecibo, providing a H I line spectral database covering the redshift range between -1600 and 18,000 km (s-1) with ~5 km s(-1) resolution. Exploiting Arecibo's large collecting area and small beam size, ALFALFA is specifically designed to probe the faint end of the H I mass function in the local universe and will provide a census of H I in the surveyed sky area to faint flux limits, making it especially useful in synergy with wide-area surveys conducted at other wavelengths. ALFALFA will also provide the basis for studies of the dynamics of galaxies within the Local Supercluster and nearby superclusters, allow measurement of the H I diameter function, and enable a first wide-area blind search for local H I tidal features, H I absorbers at z < 0.06, and OH megamasers in the redshift range 0.16 < z < 0.25. Although completion of the survey will require some 5 years, public access to the ALFALFA data and data products will be provided in a timely manner, thus allowing its application for studies beyond those targeted by the ALFALFA collaboration. ALFALFA adopts a two-pass, minimum intrusion, drift scan observing technique that samples the same region of sky at two separate epochs to aid in the discrimination of cosmic signals from noise and terrestrial interference. Survey simulations, which take into account large-scale structure in the mass distribution and incorporate experience with the ALFA system gained from tests conducted during its commissioning phase, suggest that ALFALFA will detect on the order of 20,000 extragalactic H I line sources out to z ~ 0.06, including several hundred with H I masses M(HI) < 10(7.5) M ?.

768 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a catalogue of redshift-independent distances included in the HyperLEDA database, which is actively maintained to be up-to-date, and the current version counts 6640 distance measurements for 2335 galaxies compiled from 430 published articles.
Abstract: We present the compilation catalogue of redshift-independent distances included in the HyperLEDA database. It is actively maintained to be up-to-date, and the current version counts 6640 distance measurements for 2335 galaxies compiled from 430 published articles. Each individual series is recalibrated onto a common distance scale based on a carefully selected set of high-quality measurements. This information together with data on H i line width, central velocity dispersion, magnitudes, diameters, and redshift is used to derive a homogeneous distance estimate and physical properties of galaxies, such as their absolute magnitudes and intrinsic size.

693 citations

Journal ArticleDOI
29 Oct 2009-Nature
TL;DR: In this paper, the authors reported that GRB 090423 lies at a redshift of z approximate to 8.2, implying that massive stars were being produced and dying as GRBs similar to 630 Myr after the Big Bang.
Abstract: Long-duration gamma-ray bursts (GRBs) are thought to result from the explosions of certain massive stars(1), and some are bright enough that they should be observable out to redshifts of z > 20 using current technology(2-4). Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-alpha emitting galaxy(5). Here we report that GRB 090423 lies at a redshift of z approximate to 8.2, implying that massive stars were being produced and dying as GRBs similar to 630 Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.

689 citations

Journal ArticleDOI
TL;DR: Cosmicflows-2 as mentioned in this paper is a compilation of distances and peculiar velocities for over 8000 galaxies, and the largest contributions come from the luminosity-line width correlation for spirals, the Tully-Fisher relation (TFR), and the related fundamental plane relation for E/S0 systems.
Abstract: Cosmicflows-2 is a compilation of distances and peculiar velocities for over 8000 galaxies. Numerically the largest contributions come from the luminosity-line width correlation for spirals, the Tully-Fisher relation (TFR), and the related fundamental plane relation for E/S0 systems, but over 1000 distances are contributed by methods that provide more accurate individual distances: Cepheid, tip of the red giant branch (TRGB), surface brightness fluctuation, Type Ia supernova, and several miscellaneous but accurate procedures. Our collaboration is making important contributions to two of these inputs: TRGB and TFR. A large body of new distance material is presented. In addition, an effort is made to ensure that all the contributions, both our own and those from the literature, are on the same scale. Overall, the distances are found to be compatible with a Hubble constant H 0 = 74.4 ? 3.0?km?s?1?Mpc?1. The great interest going forward with this data set will be with velocity field studies. Cosmicflows-2 is characterized by a great density and high accuracy of distance measures locally, falling to sparse and coarse sampling extending to z = 0.1.

589 citations


Authors

Showing all 681 results

NameH-indexPapersCitations
V. Stolyarov11923879004
Dmitry Bizyaev11044969001
Elena Pian10059839448
Alexei A. Starobinsky8834042331
Valery M. Nakariakov6935015801
Eliana Palazzi6846621633
Luciano Nicastro6435634305
Martin Roth5430915656
Thomas Becker5349611487
Igor D. Karachentsev5324210524
V. H. Chavushyan472956177
David Eichler4626010755
Alexei Y. Kniazev401079464
Th. Boller401695855
Alla I. Shapovalova371063560
Network Information
Related Institutions (5)
INAF
30.8K papers, 1.2M citations

93% related

Space Telescope Science Institute
14.1K papers, 947.2K citations

93% related

Institut d'Astrophysique de Paris
7.6K papers, 491.5K citations

92% related

Australia Telescope National Facility
2.7K papers, 151.5K citations

92% related

Kapteyn Astronomical Institute
3.5K papers, 180.9K citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202228
202122
202032
201933
201845