scispace - formally typeset
Search or ask a question
Institution

University of Arkansas for Medical Sciences

EducationLittle Rock, Arkansas, United States
About: University of Arkansas for Medical Sciences is a education organization based out in Little Rock, Arkansas, United States. It is known for research contribution in the topics: Population & Health care. The organization has 14077 authors who have published 26012 publications receiving 973592 citations. The organization is also known as: UAMS.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that hypertrophic chondrocytes and osteocytes, both of which are embedded in matrix, are essential sources of the RANKL that controls mineralized cartilage resorption and bone remodeling, respectively.
Abstract: To date, the dogma in the field has been that RANKL, an essential cytokine in osteoclast maturation, is released by osteoblasts as a way to coordinate bone growth and bone loss during adult bone remodeling. Now, Hiroshi Takayanagi and colleagues, as well as Charles O'Brien and colleagues, have independently found that osteocytes are the predominant source of RANKL in the adult mouse. As RANKL signaling is a key target in treating osteoporosis, these results have potentially important implications for disease management.

1,122 citations

Journal ArticleDOI
TL;DR: It is reported that feeding pregnant black a/a dams methyl‐supplemented diets alters epigenetic regulation of ag outi expression in their offspring, as indicated by increased agouti/black mottling in the direction of the pseudoagouti phenotype.
Abstract: 'Viable yellow' (Avy/a) mice are larger, obese, hyperinsulinemic, more susceptible to cancer, and, on average, shorter lived than their non-yellow siblings. They are epigenetic mosaics ranging from a yellow phenotype with maximum ectopic agouti overexpression, through a continuum of mottled agouti/yellow phenotypes with partial agouti overexpression, to a pseudoagouti phenotype with minimal ectopic expression. Pseudoagouti Avy/a mice are lean, healthy, and longer lived than their yellow siblings. Here we report that feeding pregnant black a/a dams methyl-supplemented diets alters epigenetic regulation of agouti expression in their offspring, as indicated by increased agouti/black mottling in the direction of the pseudoagouti phenotype. We also present confirmatory evidence that epigenetic phenotypes are maternally heritable. Thus Avy expression, already known to be modulated by imprinting, strain-specific modification, and maternal epigenetic inheritance, is also modulated by maternal diet. These observations suggest, at least in this special case, that maternal dietary supplementation may positively affect health and longevity of the offspring. Therefore, this experimental system should be useful for identifying maternal factors that modulate epigenetic mechanisms, especially DNA methylation, in developing embryos.

1,039 citations

Journal ArticleDOI
TL;DR: Recent advances in understanding how glucose metabolism sustains basic brain physiology are reviewed to form a comprehensive picture of the cooperation required between different systems and cell types, and the specific breakdowns in this cooperation that lead to disease.

1,021 citations

Journal ArticleDOI
15 Sep 2006-Blood
TL;DR: A subset of cases with a predominating myeloid gene expression signature had more favorable baseline characteristics and superior prognosis to those lacking this signature, suggesting that this signature is linked to disease progression.

1,012 citations


Authors

Showing all 14187 results

NameH-indexPapersCitations
Hagop M. Kantarjian2043708210208
Yusuke Nakamura1792076160313
Kenneth C. Anderson1781138126072
David R. Williams1782034138789
Yang Yang1712644153049
John E. Morley154137797021
Jeffrey L. Cummings148833116067
Hugh A. Sampson14781676492
Michael J. Keating140116976353
Kristine Yaffe13679472250
Nancy J. Cox135778109195
Stephen W. Scherer13568585752
Nikhil C. Munshi13490667349
Siamon Gordon13142077948
Jian-Guo Bian128121980964
Network Information
Related Institutions (5)
University of Alabama at Birmingham
86.7K papers, 3.9M citations

96% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

96% related

University of California, San Francisco
186.2K papers, 12M citations

96% related

Baylor College of Medicine
94.8K papers, 5M citations

96% related

Emory University
122.4K papers, 6M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202332
2022156
20211,609
20201,410
20191,214
20181,251