scispace - formally typeset
Search or ask a question
Institution

University of Arkansas for Medical Sciences

EducationLittle Rock, Arkansas, United States
About: University of Arkansas for Medical Sciences is a education organization based out in Little Rock, Arkansas, United States. It is known for research contribution in the topics: Population & Health care. The organization has 14077 authors who have published 26012 publications receiving 973592 citations. The organization is also known as: UAMS.


Papers
More filters
Journal ArticleDOI
Christian Lieven1, Moritz Emanuel Beber1, Brett G. Olivier2, Frank Bergmann3, Meriç Ataman4, Parizad Babaei1, Jennifer A. Bartell1, Lars M. Blank5, Siddharth Chauhan6, Kevin Correia7, Christian Diener8, Christian Diener9, Andreas Dräger10, Birgitta E. Ebert11, Birgitta E. Ebert5, Janaka N. Edirisinghe12, José P. Faria12, Adam M. Feist6, Adam M. Feist1, Georgios Fengos4, Ronan M. T. Fleming13, Beatriz García-Jiménez14, Beatriz García-Jiménez15, Vassily Hatzimanikatis4, Wout van Helvoirt16, Wout van Helvoirt17, Christopher S. Henry12, Henning Hermjakob18, Markus J. Herrgård1, Ali Kaafarani1, Hyun Uk Kim19, Zachary A. King6, Steffen Klamt20, Edda Klipp21, Jasper J. Koehorst22, Matthias König21, Meiyappan Lakshmanan23, Dong-Yup Lee24, Dong-Yup Lee23, Sang Yup Lee1, Sang Yup Lee19, Sunjae Lee25, Sunjae Lee26, Nathan E. Lewis6, Filipe Liu12, Hongwu Ma27, Daniel Machado, Radhakrishnan Mahadevan7, Paulo Maia, Adil Mardinoglu25, Adil Mardinoglu26, Gregory L. Medlock28, Jonathan M. Monk6, Jens Nielsen29, Jens Nielsen1, Lars K. Nielsen11, Lars K. Nielsen1, Juan Nogales15, Intawat Nookaew30, Intawat Nookaew29, Bernhard O. Palsson1, Bernhard O. Palsson6, Jason A. Papin28, Kiran Raosaheb Patil, Mark G. Poolman31, Nathan D. Price9, Osbaldo Resendis-Antonio8, Anne Richelle6, Isabel Rocha32, Isabel Rocha33, Benjamin Sanchez29, Benjamin Sanchez1, Peter J. Schaap22, Rahuman S. Malik Sheriff18, Saeed Shoaie25, Saeed Shoaie26, Nikolaus Sonnenschein1, Bas Teusink2, Paulo Vilaça, Jon Olav Vik17, Judith A. H. Wodke21, Joana C. Xavier34, Qianqian Yuan27, Maksim Zakhartsev17, Cheng Zhang26 
TL;DR: A community effort to develop a test suite named MEMOTE (for metabolic model tests) to assess GEM quality, and advocate adoption of the latest version of the Systems Biology Markup Language level 3 flux balance constraints (SBML3FBC) package as the primary description and exchange format.
Abstract: We acknowledge D. Dannaher and A. Lopez for their supporting work on the Angular parts of MEMOTE; resources and support from the DTU Computing Center; J. Cardoso, S. Gudmundsson, K. Jensen and D. Lappa for their feedback on conceptual details; and P. D. Karp and I. Thiele for critically reviewing the manuscript. We thank J. Daniel, T. Kristjansdottir, J. Saez-Saez, S. Sulheim, and P. Tubergen for being early adopters of MEMOTE and for providing written testimonials. J.O.V. received the Research Council of Norway grants 244164 (GenoSysFat), 248792 (DigiSal) and 248810 (Digital Life Norway); M.Z. received the Research Council of Norway grant 244164 (GenoSysFat); C.L. received funding from the Innovation Fund Denmark (project “Environmentally Friendly Protein Production (EFPro2)”); C.L., A.K., N. S., M.B., M.A., D.M., P.M, B.J.S., P.V., K.R.P. and M.H. received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 686070 (DD-DeCaF); B.G.O., F.T.B. and A.D. acknowledge funding from the US National Institutes of Health (NIH, grant number 2R01GM070923-13); A.D. was supported by infrastructural funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections; N.E.L. received funding from NIGMS R35 GM119850, Novo Nordisk Foundation NNF10CC1016517 and the Keck Foundation; A.R. received a Lilly Innovation Fellowship Award; B.G.-J. and J. Nogales received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 686585 for the project LIAR, and the Spanish Ministry of Economy and Competitivity through the RobDcode grant (BIO2014-59528-JIN); L.M.B. has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 633962 for project P4SB; R.F. received funding from the US Department of Energy, Offices of Advanced Scientific Computing Research and the Biological and Environmental Research as part of the Scientific Discovery Through Advanced Computing program, grant DE-SC0010429; A.M., C.Z., S.L. and J. Nielsen received funding from The Knut and Alice Wallenberg Foundation, Advanced Computing program, grant #DE-SC0010429; S.K.’s work was in part supported by the German Federal Ministry of Education and Research (de.NBI partner project “ModSim” (FKZ: 031L104B)); E.K. and J.A.H.W. were supported by the German Federal Ministry of Education and Research (project “SysToxChip”, FKZ 031A303A); M.K. is supported by the Federal Ministry of Education and Research (BMBF, Germany) within the research network Systems Medicine of the Liver (LiSyM, grant number 031L0054); J.A.P. and G.L.M. acknowledge funding from US National Institutes of Health (T32-LM012416, R01-AT010253, R01-GM108501) and the Wagner Foundation; G.L.M. acknowledges funding from a Grand Challenges Exploration Phase I grant (OPP1211869) from the Bill & Melinda Gates Foundation; H.H. and R.S.M.S. received funding from the Biotechnology and Biological Sciences Research Council MultiMod (BB/N019482/1); H.U.K. and S.Y.L. received funding from the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries (grants NRF-2012M1A2A2026556 and NRF-2012M1A2A2026557) from the Ministry of Science and ICT through the National Research Foundation (NRF) of Korea; H.U.K. received funding from the Bio & Medical Technology Development Program of the NRF, the Ministry of Science and ICT (NRF-2018M3A9H3020459); P.B., B.J.S., Z.K., B.O.P., C.L., M.B., N.S., M.H. and A.F. received funding through Novo Nordisk Foundation through the Center for Biosustainability at the Technical University of Denmark (NNF10CC1016517); D.-Y.L. received funding from the Next-Generation BioGreen 21 Program (SSAC, PJ01334605), Rural Development Administration, Republic of Korea; G.F. was supported by the RobustYeast within ERA net project via SystemsX.ch; V.H. received funding from the ETH Domain and Swiss National Science Foundation; M.P. acknowledges Oxford Brookes University; J.C.X. received support via European Research Council (666053) to W.F. Martin; B.E.E. acknowledges funding through the CSIRO-UQ Synthetic Biology Alliance; C.D. is supported by a Washington Research Foundation Distinguished Investigator Award. I.N. received funding from National Institutes of Health (NIH)/National Institute of General Medical Sciences (NIGMS) (grant P20GM125503).

255 citations

Journal ArticleDOI
TL;DR: Most proteins composed of subunits bound SDS much more slowly, invariably dissociating to the subunit, and Papain and pepsin were much more resistant to binding and activity loss than other proteins.

255 citations

Journal ArticleDOI
TL;DR: The rate of acquisition of H pylori infection increases with age, is higher in blacks than whites, and is inversely related to socioeconomic class.
Abstract: The epidemiology of Helicobacter pylori infection was studied in 245 healthy children (between 3 and 20 years of age) who presented for day surgery at Arkansas Children9s Hospital. H pylori infection was identified serologically using an enzyme-linked immunosorbent assay to detect the presence of IgG against the high molecular weight, cell-associated antigens of H pylori. Demographic information collected included age, gender, race, family income, type of housing, location of housing, water supply, health status, upper gastrointestinal symptoms, and keeping pets. One hundred eighty-nine white children and 56 black children were studied; 139 were boys and 106 were girls. The data were analyzed by logistic regression analysis. H pylori infection increased significantly with age (P $75 000/year (P

255 citations

Journal ArticleDOI
TL;DR: Advances in in vivo photoacoustic blood cancer testing with a high-pulse-repetition-rate diode laser make feasible the early diagnosis of melanoma during the initial parallel progression of primary tumor and CTCs, and laser blood purging using noninvasive or hemodialysis-like schematics for the prevention of metastasis.
Abstract: The circulating tumor cell (CTC) count has been shown as a prognostic marker for metastasis development. However, its clinical utility for metastasis prevention remains unclear, because metastases may already be present at the time of initial diagnosis with existing assays. Their sensitivity ex vivo is limited by a small blood sample volume, whereas in vivo examination of larger blood volumes may be clinically restricted by the toxicity of labels used for targeting of CTCs. We introduce a method for in vivo photoacoustic blood cancer testing with a high-pulse-repetition-rate diode laser that, when applied to melanoma, is free of this limitation. It uses the overexpression of melanin clusters as intrinsic, spectrally-specific cancer markers and signal amplifiers, thus providing higher photoacoustic contrast of melanoma cells compared with a blood background. In tumor-bearing mouse models and melanoma-spiked human blood samples, we showed a sensitivity level of 1 CTC/mL with the potential to improve this sensitivity 10(3)-fold in humans in vivo, which is impossible with existing assays. Additional advances of this platform include decreased background signals from blood through changes in its oxygenation, osmolarity, and hematocrit within physiologic norms, assessment of CTCs in deep vessels, in vivo CTC enrichment, and photoacoustic-guided photothermal ablation of CTCs in the bloodstream. These advances make feasible the early diagnosis of melanoma during the initial parallel progression of primary tumor and CTCs, and laser blood purging using noninvasive or hemodialysis-like schematics for the prevention of metastasis.

254 citations

Journal ArticleDOI
TL;DR: MR imaging is the single best imaging modality for both pre- and posttreatment evaluation of intracranial chordoma and combination treatment with radical surgical resection and proton beam radiation therapy achieves the best results.
Abstract: Intracranial chordoma is a locally aggressive and relatively rare tumor of the skull base that is thought to originate from embryonic remnants of the primitive notochord. Both computed tomography (CT) and magnetic resonance (MR) imaging are usually required for evaluation of intracranial chordomas due to bone involvement and the proximity of these tumors to many critical soft-tissue structures. At CT, intracranial chordoma typically appears as a centrally located, well-circumscribed, expansile soft-tissue mass that arises from the clivus with associated extensive lytic bone destruction. However, MR imaging is the single best imaging modality for both pre- and posttreatment evaluation of intracranial chordoma. On T1-weighted MR images, intracranial chordomas demonstrate intermediate to low signal intensity and are easily recognized within the high-signal-intensity fat of the clivus. On T2-weighted MR images, they characteristically demonstrate very high signal intensity, a finding that likely reflects the high fluid content of vacuolated cellular components. Moderate to marked enhancement is common and often heterogeneous on contrast material-enhanced images. Combination treatment with radical surgical resection and proton beam radiation therapy achieves the best results.

254 citations


Authors

Showing all 14187 results

NameH-indexPapersCitations
Hagop M. Kantarjian2043708210208
Yusuke Nakamura1792076160313
Kenneth C. Anderson1781138126072
David R. Williams1782034138789
Yang Yang1712644153049
John E. Morley154137797021
Jeffrey L. Cummings148833116067
Hugh A. Sampson14781676492
Michael J. Keating140116976353
Kristine Yaffe13679472250
Nancy J. Cox135778109195
Stephen W. Scherer13568585752
Nikhil C. Munshi13490667349
Siamon Gordon13142077948
Jian-Guo Bian128121980964
Network Information
Related Institutions (5)
University of Alabama at Birmingham
86.7K papers, 3.9M citations

96% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

96% related

University of California, San Francisco
186.2K papers, 12M citations

96% related

Baylor College of Medicine
94.8K papers, 5M citations

96% related

Emory University
122.4K papers, 6M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202332
2022156
20211,609
20201,410
20191,214
20181,251