scispace - formally typeset
Search or ask a question

Showing papers by "University of Maryland Biotechnology Institute published in 2001"


Journal ArticleDOI
TL;DR: Ninety percent of the known disease‐causing missense mutations examined fit a model for assigning a mechanism of action of each mutation at the protein level, with the vast majority affecting protein stability, through a variety of energy related factors.
Abstract: Inherited disease susceptibility in humans is most commonly associated with single nucleotide polymorphisms (SNPs). The mechanisms by which this occurs are still poorly understood. We have analyzed the effect of a set of disease-causing missense mutations arising from SNPs, and a set of newly determined SNPs from the general population. Results of in vitro mutagenesis studies, together with the protein structural context of each mutation, are used to develop a model for assigning a mechanism of action of each mutation at the protein level. Ninety percent of the known disease-causing missense mutations examined fit this model, with the vast majority affecting protein stability, through a variety of energy related factors. In sharp contrast, over 70% of the population set are found to be neutral. The remaining 30% are potentially involved in polygenic disease.

704 citations


Journal ArticleDOI
TL;DR: Based on the recent discovery of GnRH multiplicity in fish and the increasing understanding of its functional significance, new GnRH agonists can be designed for more potent, affordable and physiologically-compatible spawning induction therapies.

590 citations


Journal ArticleDOI
TL;DR: The study has revealed the existence of a chitinolytic enzyme in the gastrointestinal tract and lung that may play a role in digestion and/or defense.

489 citations


Journal ArticleDOI
TL;DR: Determining the phylogenetic affiliation of sponge-associated microorganisms by 16S rRNA analysis facilitated the rational selection of culture media and isolation conditions to target specific groups of well-represented bacteria for laboratory culture.
Abstract: Molecular techniques were employed to document the microbial diversity associated with the marine sponge Rhopaloeides odorabile. The phylogenetic affiliation of sponge-associated bacteria was assessed by 16S rRNA sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rDNA analysis. The community structure was extremely diverse with representatives of the Actinobacteria, low-G+C gram-positive bacteria, the beta- and gamma-subdivisions of the Proteobacteria, Cytophaga/Flavobacterium, green sulfur bacteria, green nonsulfur bacteria, planctomycetes, and other sequence types with no known close relatives. FISH probes revealed the spatial location of these bacteria within the sponge tissue, in some cases suggesting possible symbiotic functions. The high proportion of 16S rRNA sequences derived from novel actinomycetes is good evidence for the presence of an indigenous marine actinomycete assemblage in R. odorabile. High microbial diversity was inferred from low duplication of clones in a library with 70 representatives. Determining the phylogenetic affiliation of sponge-associated microorganisms by 16S rRNA analysis facilitated the rational selection of culture media and isolation conditions to target specific groups of well-represented bacteria for laboratory culture. Novel media incorporating sponge extracts were used to isolate bacteria not previously recovered from this sponge.

395 citations


Journal ArticleDOI
TL;DR: In this article, the presence of ctxA, hlyA, ompU, stn/sto, tcpA, tcpI, toxR, and zot genes, using multiplex PCR, was examined for the presence in V. cholerae.
Abstract: Vibrio cholerae is an autochthonous inhabitant of riverine and estuarine environments and also is a facultative pathogen for humans. Genotyping can be useful in assessing the risk of contracting cholera, intestinal, or extraintestinal infections via drinking water and/or seafood. In this study, environmental isolates of V. cholerae were examined for the presence of ctxA, hlyA, ompU, stn/sto, tcpA, tcpI, toxR, and zot genes, using multiplex PCR. Based on tcpA and hlyA gene comparisons, the strains could be grouped into Classical and El Tor biotypes. The toxR, hlyA, and ompU genes were present in 100, 98.6, and 87.0% of the V. cholerae isolates, respectively. The CTX genetic element and toxin-coregulated pilus El Tor (tcpA ET) gene were present in all toxigenic V. cholerae O1 and V. cholerae O139 strains examined in this study. Three of four nontoxigenic V. cholerae O1 strains contained tcpA ET. Interestingly, among the isolates of V. cholerae non-O1/non-O139, two had tcpA Classical, nine contained tcpA El Tor, three showed homology with both biotype genes, and four carried the ctxA gene. The stn/sto genes were present in 28.2% of the non-O1/non-O139 strains, in 10.5% of the toxigenic V. cholerae O1, and in 14.3% of the O139 serogroups. Except for stn/sto genes, all of the other genes studied occurred with high frequency in toxigenic V. cholerae O1 and O139 strains. Based on results of this study, surveillance of non-O1/non-O139 V. cholerae in the aquatic environment, combined with genotype monitoring using ctxA, stn/sto, and tcpA ET genes, could be valuable in human health risk assessment.

357 citations


Journal ArticleDOI
TL;DR: This work evaluates different strategies for optimizing information return on effort and concludes that the strategy that maximizes structural coverage requires about seven times fewer structure determinations compared with the strategy in which targets are selected at random.
Abstract: Structural genomics has the goal of obtaining useful, three-dimensional models of all proteins by a combination of experimental structure determination and comparative model building. We evaluate different strategies for optimizing information return on effort. The strategy that maximizes structural coverage requires about seven times fewer structure determinations compared with the strategy in which targets are selected at random. With a choice of reasonable model quality and the goal of 90% coverage, we extrapolate the estimate of the total effort of structural genomics. It would take ∼16,000 carefully selected structure determinations to construct useful atomic models for the vast majority of all proteins. In practice, unless there is global coordination of target selection, the total effort will likely increase by a factor of three. The task can be accomplished within a decade provided that selection of targets is highly coordinated and significant funding is available.

347 citations


Journal ArticleDOI
TL;DR: It is shown that steroid-activated programmed cell death of Drosophila salivary glands occurs by autophagy, and studies indicate that apoptosis and autophagic utilize some common regulatory mechanisms.
Abstract: Apoptosis and autophagy are morphologically distinct forms of programmed cell death. While autophagy occurs during the development of diverse organisms and has been implicated in tumorigenesis, little is known about the molecular mechanisms that regulate this type of cell death. Here we show that steroid-activated programmed cell death of Drosophila salivary glands occurs by autophagy. Expression of p35 prevents DNA fragmentation and partially inhibits changes in the cytosol and plasma membranes of dying salivary glands, suggesting that caspases are involved in autophagy. The steroid-regulated BR-C, E74A and E93 genes are required for salivary gland cell death. BR-C and E74A mutant salivary glands exhibit vacuole and plasma membrane breakdown, but E93 mutant salivary glands fail to exhibit these changes, indicating that E93 regulates early autophagic events. Expression of E93 in embryos is sufficient to induce cell death with many characteristics of apoptosis, but requires the H99 genetic interval that contains the rpr, hid and grim proapoptotic genes to induce nuclear changes diagnostic of apoptosis. In contrast, E93 expression is sufficient to induce the removal of cells by phagocytes in the absence of the H99 genes. These studies indicate that apoptosis and autophagy utilize some common regulatory mechanisms.

345 citations


Journal ArticleDOI
TL;DR: The location of strain NW001 within the sponge mesohyl was visualized by in situ hybridization, using fluorescently labeled probes based on the 16S rRNA gene sequence of this strain, suggesting that these bacteria may play a role in nutrient uptake by the sponge.
Abstract: The microbial community cultured from the marine sponge Rhopaloeides odorabile Thompson et al. is dominated by a single bacterium, designated strain NW001. Sequence analysis of 1212 bp of the16S rRNA gene of strain NW001 indicates that it is a member of the α-subgroup of the class Proteobacteria. The association between this bacterium and its host sponge was observed in healthy R. odorabile collected from six different reefs in the Great Barrier Reef representing a geographic distance of 460 km, and in four collections in different seasons in 1997–1998 at Davies Reef (18°49.6′S; 147°34.49′E). The proportion of colonies of strain NW001 in samples from R. odorabile, expressed as a percentage of the total heterotrophic bacterial colony count, showed no significant spatial (range: 81–98%) or temporal differences (range: 81–99%), although colony counts of strain NW001 varied by up to two orders of magnitude between reef sites and sampling periods. The location of strain NW001 within the sponge mesohyl was visualized by in situ hybridization, using fluorescently labeled probes based on the 16S rRNA gene sequence of this strain. Cells of strain NW001 surround the choanocyte chambers, suggesting that these bacteria may play a role in nutrient uptake by the sponge. The absence of strain NW001 from corresponding seawater samples indicates that it has a specific, intimate relationship with R. odorabile and is not being utilized as a food source. A unique cyanobacterium related to the genera Leptolyngbya and Plectonema was also isolated from R. odorabile and characterized by 16S rRNA gene sequencing.

292 citations


Journal ArticleDOI
TL;DR: It is suggested that the timely and appropriate expression of CYP19 is important in development and that the expression of CyP19b (the "extra-gonadal" form) may be associated with sexual differentiation if not sexual determination.
Abstract: Cytochrome P450 aromatase (CYP19) is the terminal enzyme in the steroidogenic pathway that converts androgens (e.g., testosterone) into estrogens (e.g., estradiol). Regulation of this gene dictates the ratio of androgens to estrogens; therefore, appropriate expression of this enzyme is critical for reproduction as well as being pivotal in sex differentiation for most vertebrates. It is assumed that most vertebrates have a single CYP19 gene that is regulated by multiple tissue-specific promoter regions. However, the zebrafish (Danio rerio) has two genes (CYP19a and CYP19b), each encoding a significantly different protein and possessing its own regulatory mechanism. The primary purpose of this study was to determine the pattern of expression of each of the CYP19 genes in the developing zebrafish. A fluorescent-based method of real-time, quantitative RT-PCR provided the sensitivity and specificity to determine transcript abundance in single embryos/juveniles harvested at days 0 through 41 days post-fertilization (dpf), which encompasses the developmental events of sex determination and gonadal differentiation. CYP19 transcripts could be detected as early as 3 or 4 dpf, (CYP19a and CYP19b, respectively) and peak abundance was detected on day five. In general, the CYP19 genes differed significantly in the ontogeny of their expression. In most cases, the gonadal form of CYP19 (CYP19a) was more abundant than the brain form (CYP19b); however, unlike CYP19a, the pattern of CYP19b expression could be clearly segregated into two populations, suggesting an association with sex differentiation. Pharmacological steroids (ethinylestradiol and 17 alpha-methyltestosterone) enhanced the expression of the CYP19b gene at all three days examined (4, 6, and 10 dpf). These data suggest that the timely and appropriate expression of CYP19 is important in development and that the expression of CYP19b (the "extra-gonadal" form) may be associated with sexual differentiation if not sexual determination. J. Exp. Zool. 290:475-483, 2001.

286 citations


Journal ArticleDOI
TL;DR: This work investigated global changes in mRNA abundance elicited by the AI-2 signaling molecule through the use of a luxS mutant that was unable to synthesizeAI-2, and significant induction of ygeV, a putative sigma(54)-dependent transcriptional activator, and yhbH, a s Sigma(54) modulating protein, suggests sigma (54) may be involved in E. coli quorum sensing.
Abstract: Bacterial cell-to-cell communication facilitates coordinated expression of specific genes in a growth rate-II and cell density-dependent manner, a process known as quorum sensing. While the discovery of a diffusible Escherichia coli signaling pheromone, termed autoinducer 2 (AI-2), has been made along with several quorum sensing genes, the overall number and coordination of genes controlled by quorum sensing through the AI-2 signal has not been studied systematically. We investigated global changes in mRNA abundance elicited by the AI-2 signaling molecule through the use of aluxS mutant that was unable to synthesize AI-2. Remarkably, 242 genes, comprising ca. 5.6% of the E. coli genome, exhibited significant transcriptional changes (either induction or repression) in response to a 300-fold AI-2 signaling differential, with many of the identified genes displaying high induction levels (more than fivefold). Significant induction of ygeV, a putative ς54-dependent transcriptional activator, andyhbH, a ς54 modulating protein, suggests ς54 may be involved in E. coli quorum sensing.

275 citations


Journal ArticleDOI
TL;DR: A novel nucleic acid stain, SYBR Gold, was used to stain marine viral particles in various types of samples and yielded bright and stable fluorescent signals that could be detected by a cooled charge-coupled device camera or by flow cytometry.
Abstract: A novel nucleic acid stain, SYBR Gold, was used to stain marine viral particles in various types of samples. Viral particles stained with SYBR Gold yielded bright and stable fluorescent signals that could be detected by a cooled charge-coupled device camera or by flow cytometry. The fluorescent signal strength of SYBR Gold-stained viruses was about twice that of SYBR Green I-stained viruses. Digital images of SYBR Gold-stained viral particles were processed to enumerate the concentration of viral particles by using digital image analysis software. Estimates of viral concentration based on digitized images were 1.3 times higher than those based on direct counting by epifluorescence microscopy. Direct epifluorescence counts of SYBR Gold-stained viral particles were in turn about 1.34 times higher than those estimated by the transmission electron microscope method. Bacteriophage lysates stained with SYBR Gold formed a distinct population in flow cytometric signatures. Flow cytometric analysis revealed at least four viral subpopulations for a Lake Erie sample and two subpopulations for a Georgia coastal sample. Flow cytometry-based viral counts for various types of samples averaged 1.1 times higher than direct epifluorescence microscopic counts. The potential application of digital image analysis and flow cytometry for rapid and accurate measurement of viral abundance in aquatic environments is discussed.

Journal ArticleDOI
TL;DR: The sensitivity of calcein staining for visualizing bone structures in developing zebrafish embryos and its effectiveness for screening for mutants that have bone structure defects are demonstrated.

Book ChapterDOI
TL;DR: Although these strains are quite similar in their fermentative, sulfur-reducing growth physiology and optimal growth temperatures, which are in the range 98-100°, significant issues of genome divergence are emerging from the ongoing study of their genomic sequences.
Abstract: Publisher Summary Microorganisms that are able to grow at temperatures above 90° are called as “hyperthermophiles.” They form a diverse group consisting of autotrophic and heterotrophic prokaryotes, including several bacteria, although the majority of hyperthermophiles are Archaea. Most of the conventional tools of genetic and physiological analysis are either not effective or very difficult to apply to these microorganisms because of their unusual growth conditions. As a result, relatively slow progress has characterized the field since its inception. A new paradigm has characterized the field recently, with the availability of complete genome sequences of five hyperthermophiles. A unique resource for comparative studies of hyperthermophiles—namely, the complete genomic sequences of three species in the genus Pyrococcus, is now accessible. Although these strains are quite similar in their fermentative, sulfur-reducing growth physiology and optimal growth temperatures, which are in the range 98-100°, significant issues of genome divergence are emerging from the ongoing study of their genomic sequences.

Journal ArticleDOI
TL;DR: It was concluded that the non-cholera-toxin-producing strains of V. cholerae, whether of clinical or environmental origin, possess the ability to produce a new secretogenic toxin that is entirely different from the toxin produced by toxigenic V. Cholerae.
Abstract: A total of 26 strains of Vibrio cholerae, including members of the O1, O139, and non-O1, non-O139 serogroups from both clinical and environmental sources, were examined for the presence of genes encoding cholera toxin (ctxA), zonula occludens toxin (zot), accessory cholera enterotoxin (ace), hemolysin (hlyA), NAG-specific heat-stable toxin (st), toxin-coregulated pilus (tcpA), and outer membrane protein (ompU), for genomic organization, and for the presence of the regulatory protein genes tcpI and toxR in order to determine relationships between epidemic serotypes and sources of isolation. While 22 of the 26 strains were hemolytic on 5% sheep blood nutrient agar, all strains were PCR positive for hlyA, the hemolysin gene. When multiplex PCR was used, all serogroup O1 and O139 strains were positive for tcpA, ompU, and tcpI. All O1 and O139 strains except one O1 strain and one O139 strain were positive for the ctxA, zot, and ace genes. Also, O1 strain VO3 was negative for the zot gene. All of the non-O1, non-O139 strains were negative for the ctxA, zot, ace, tcpA, and tcpI genes, and all of the non-O1, non-O139 strains except strain VO26 were negative for ompU. All of the strains except non-O1, non-O139 strain VO22 were PCR positive for the gene encoding the central regulatory protein, toxR. All V. cholerae strains were negative for the NAG-specific st gene. Of the nine non-ctx-producing strains of V. cholerae, only one, non-O1, non-O139 strain VO24, caused fluid accumulation in the rabbit ileal loop assay. The other eight strains, including an O1 strain, an O139 strain, and six non-O1, non-O139 strains, regardless of the source of isolation, caused fluid accumulation after two to five serial passages through the rabbit gut. Culture filtrates of all non-cholera-toxigenic strains grown in AKI media also caused fluid accumulation, suggesting that a new toxin was produced in AKI medium by these strains. Studies of clonality performed by using enterobacterial repetitive intergenic consensus sequence PCR, Box element PCR, amplified fragment length polymorphism (AFLP), and pulsed-field gel electrophoresis (PFGE) collectively indicated that the V. cholerae O1 and O139 strains had a clonal origin, whereas the non-O1, non-O139 strains belonged to different clones. The clinical isolates closely resembled environmental isolates in their genomic patterns. Overall, there was an excellent correlation among the results of the PCR, AFLP, and PFGE analyses, and individual strains derived from clinical and environmental sources produced similar fingerprint patterns. From the results of this study, we concluded that the non-cholera-toxin-producing strains of V. cholerae, whether of clinical or environmental origin, possess the ability to produce a new secretogenic toxin that is entirely different from the toxin produced by toxigenic V. cholerae O1 and O139 strains. We also concluded that the aquatic environment is a reservoir for V. cholerae O1, O139, non-O1, and non-O139 serogroup strains.

Journal ArticleDOI
TL;DR: Results show that the virulence and pathogenic-phenotype markers of IBDV reside in VP2, one of the chimeric viruses containing VP2 sequences of the virulent strain, suggesting that VP2 contains the determinants for cell tropism.
Abstract: Infectious bursal disease viruses (IBDVs), belonging to the family Birnaviridae , exhibit a wide range of immunosuppressive potential, pathogenicity, and virulence for chickens. The genomic segment A encodes all the structural (VP2, VP4, and VP3) and nonstructural proteins, whereas segment B encodes the viral RNA-dependent RNA polymerase (VP1). To identify the molecular determinants for the virulence, pathogenic phenotype, and cell tropism of IBDV, we prepared full-length cDNA clones of a virulent strain, Irwin Moulthrop (IM), and constructed several chimeric cDNA clones of segments A and B between the attenuated vaccine strain (D78) and the virulent IM or GLS variant strain. Using the cRNA-based reverse-genetics system developed for IBDV, we generated five chimeric viruses after transfection by electroporation procedures in Vero or chicken embryo fibroblast (CEF) cells, one of which was recovered after propagation in embryonated eggs. To evaluate the characteristics of the recovered viruses in vivo, we inoculated 3-week-old chickens with D78, IM, GLS, or chimeric viruses and analyzed their bursae for pathological lesions 3 days postinfection. Viruses in which VP4, VP4-VP3, and VP1 coding sequences of the virulent strain IM were substituted for the corresponding region in the vaccine strain failed to induce hemorrhagic lesions in the bursa. In contrast, viruses in which the VP2 coding region of the vaccine strain was replaced with the variant GLS or virulent IM strain caused rapid bursal atrophy or hemorrhagic lesions in the bursa, as seen with the variant or classical virulent strain, respectively. These results show that the virulence and pathogenic-phenotype markers of IBDV reside in VP2. Moreover, one of the chimeric viruses containing VP2 sequences of the virulent strain could not be recovered in Vero or CEF cells but was recovered in embryonated eggs, suggesting that VP2 contains the determinants for cell tropism. Similarly, one of the chimeric viruses containing the VP1 segment of the virulent strain could not be recovered in Vero cells but was recovered in CEF cells, suggesting that VP1 contains the determinants for cell-specific replication in Vero cells. By comparing the deduced amino acid sequences of the D78 and IM strains and their reactivities with monoclonal antibody 21, which binds specifically to virulent IBDV, the putative amino acids involved in virulence and cell tropism were identified. Our results indicate that residues Gln at position 253 (Gln253), Asp279, and Ala284 of VP2 are involved in the virulence, cell tropism, and pathogenic phenotype of virulent IBDV.

Journal ArticleDOI
TL;DR: The goal of this chapter is to document recent advances in hypovirus molecular genetics and to provide examples of how that progress is leading to the identification of virus-encoded determinants responsible for altering fungal host phenotype, insights into essential and dispensable elements of hypov virus replication, revelations concerning the role of G-protein signaling in fungal pathogenesis, and new avenues for enhancing biological control potential.
Abstract: Fungal viruses are considered unconventional because they lack an extracellular route of infection and persistently infect their hosts, often in the absence of apparent symptoms. Because mycoviruses are limited to intracellular modes of transmission, they can be considered as intrinsic fungal genetic elements. Such long-term genetic interactions, even involving apparently asymptomatic mycoviruses, are likely to have an impact on fungal ecology and evolution. One of the clearest examples supporting this view is the phenomenon of hypovirulence (virulence attenuation) observed for strains of the chestnut blight fungus, Cryphonectria parasitica, harboring members of the virus family Hypoviridae. The goal of this chapter is to document recent advances in hypovirus molecular genetics and to provide examples of how that progress is leading to the identification of virus-encoded determinants responsible for altering fungal host phenotype, insights into essential and dispensable elements of hypovirus replication, revelations concerning the role of G-protein signaling in fungal pathogenesis, and new avenues for enhancing biological control potential.

Journal ArticleDOI
21 Sep 2001-Science
TL;DR: In response to fluorescence-guided focal photolysis of caged glutamate, individual terminal apical dendrites generated cadmium-sensitive all-or-none responses that were subthreshold for somatic action potentials.
Abstract: The dendritic arbor of pyramidal neurons is not a monolithic structure. We show here that the excitability of terminal apical dendrites differs from that of the apical trunk. In response to fluorescence-guided focal photolysis of caged glutamate, individual terminal apical dendrites generated cadmium-sensitive all-or-none responses that were subthreshold for somatic action potentials. Calcium transients produced by all-or-none responses were not restricted to the sites of photolysis, but occurred throughout individual distal dendritic compartments, indicating that electrogenesis is mediated primarily by voltage-gated calcium channels. Compartmentalized and binary behavior of parallel-connected terminal dendrites can greatly expand the computational power of a single neuron.

Journal ArticleDOI
TL;DR: The BindingDB is a public web-accessible database of measured binding affinities for various molecular types that allows queries based upon a range of criteria, including chemical similarity or substructure, sequence homology, numerical criteria and reactant names.
Abstract: This paper presents an initial description of the BindingDB, a public web-accessible database of measured binding affinities for various molecular types (http://www.bindingdb.org). The BindingDB allows queries based upon a range of criteria, including chemical similarity or substructure, sequence homology, numerical criteria (e.g. delta G(o) < 5 kcal/mol) and reactant names (e.g. "lysozyme"). Principles of Human-Computer Interactions are being employed in creating the query interface and user-feedback is being solicited. The data specification includes significant experimental detail. A full dictionary has been created for isothermal titration calorimetry data in consultation with experimentalists and data dictionaries for enzyme-inhibition and other measurement techniques are being developed. Currently, the BindingDB contains several data sets of broad interest, such as antigen-antibody binding and cyclodextrin/small molecule binding. However, it is anticipated that online deposition by experimentalists will ultimately contribute to a larger flow of data. We are actively developing software and file specifications to facilitate such deposition.

Journal ArticleDOI
TL;DR: It is shown that expression of ORF74 in a minority of cells in KS lesions could influence uninfected cells or latently infected cells via autocrine and paracrine mechanisms, thereby contributing to KS pathogenesis.
Abstract: Infection with human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma (KS)-associated herpesvirus, is necessary for the development of KS. The HHV-8 lytic-phase gene ORF74 is related to G protein-coupled receptors, particularly interleukin-8 (IL-8) receptors. ORF74 activates the inositol phosphate/phospholipase C pathway and the downstream mitogen-activated protein kinases, JNK/SAPK and p38. We show here that ORF74 also activates NF-kappaB independent of ligand when expressed in KS-derived HHV-8-negative endothelial cells or primary vascular endothelial cells. NF-kappaB activation was enhanced by the chemokine GROalpha, but not by IL-8. Mutation of Val to Asp in the ORF74 second cytoplasmic loop did not affect ligand-independent signaling activity, but it greatly increased the response to GROalpha. ORF74 upregulated the expression of NF-kappaB-dependent inflammatory cytokines (RANTES, IL-6, IL-8, and granulocyte-macrophage colony-stimulating factor) and adhesion molecules (VCAM-1, ICAM-1, and E-selectin). Supernatants from transfected KS cells activated NF-kappaB signaling in untransfected cells and elicited the chemotaxis of monocytoid and T-lymphoid cells. Expression of ORF74 conferred on primary endothelial cells a morphology that was strikingly similar to that of spindle cells present in KS lesions. Taken together, these data, demonstrating that ORF74 activates NF-kappaB and induces the expression of proangiogenic and proinflammatory factors, suggest that expression of ORF74 in a minority of cells in KS lesions could influence uninfected cells or latently infected cells via autocrine and paracrine mechanisms, thereby contributing to KS pathogenesis.

Journal ArticleDOI
TL;DR: The consistent association with dechlorinating activity combined with high similarity to other known de chlorinating microorganisms indicates that bacterium o-17 catalyses the reductive ortho-dechlorination of 2,3,5,6-tetrachlorobiphenyl.
Abstract: Anaerobic bacteria reductively dechlorinate polychlorinated biphenyls (PCBs) in aquatic sediments, but these microorganisms remain uncultured and, until now, unidentified. Through denaturing gradient gel electrophoresis (DGGE) of 16S rDNA from a highly enriched ortho-PCB dechlorinating culture, the growth of a single microorganism was shown to be dependent upon the presence and dechlorination of 2,3,5,6-tetrachlorobiphenyl. This is the first identification of a microorganism that catalyses the reductive dechlorination of a PCB. The organism, bacterium o-17, has high sequence similarity with the green non-sulphur bacteria and with a group that includes Dehalococcoides ethenogenes. Bacterium o-17 required acetate for dechlorination and growth. H2:CO2 (80:20 at 101 kPa) did not support dechlorination or growth of the dechlorinator. Archaeal 16S rDNA was not detected in actively dechlorinating bromoethanesulphonate-treated non-methanogenic cultures, which indicated that methanogenic Archaea were not required for dechlorination. The consistent association with dechlorinating activity combined with high similarity to other known dechlorinating microorganisms indicates that bacterium o-17 catalyses the reductive ortho-dechlorination of 2,3,5,6-tetrachlorobiphenyl.

Journal ArticleDOI
TL;DR: In this paper, a polymerase chain reaction with oligonucleotide primers specific to 16S rDNA gene sequences was used to characterize the total bacterial population, including culturable and non-culturable species, as well as possible endosymbiotic bacteria.
Abstract: Dinoflagellates (Eukaryota; Alveolata; Dinophyceae) are single-cell eukaryotic microorganisms implicated in many toxic outbreaks in the marine and estuarine environment. Co-existing with dinoflagellate communities are bacterial assemblages that undergo changes in species composition, compete for nutrients and produce bioactive compounds, including toxins. As part of an investigation to understand the role of the bacteria in dinoflagellate physiology and toxigenesis, we have characterized the bacterial community associated with laboratory cultures of four 'Pfiesteria-like' dinoflagellates isolated from 1997 fish killing events in Chesapeake Bay. A polymerase chain reaction with oligonucleotide primers specific to prokaryotic 16S rDNA gene sequences was used to characterize the total bacterial population, including culturable and non-culturable species, as well as possible endosymbiotic bacteria. The results indicate a diverse group of over 30 bacteria species co-existing in the dinoflagellate cultures. The broad phylogenetic types of dinoflagellate-associated bacteria were generally similar, although not identical, to those bacterial types found in association with other harmful algal species. Dinoflagellates were made axenic, and the culturable bacteria were added back to determine the contribution of the bacteria to dinoflagellate growth. Confocal scanning laser fluorescence microscopy with 16S rDNA probes was used to demonstrate a physical association of a subset of the bacteria and the dinoflagellate cells. These data point to a key component in the bacterial community being species in the marine alpha-proteobacteria group, most closely associated with the alpha-3 or SAR83 cluster.


Journal ArticleDOI
TL;DR: In this paper, the authors focused on local-scale patterns within this region in order to examine the geographic variability of seasonal rainfall and river discharge as related to El Nino-Southern Oscillation (ENSO).
Abstract: Hemispherical and regional analyses of climatic patterns relating to El Nino–Southern Oscillation (ENSO) indicate strong responses in the southeastern United States, especially during the wintertime. Using Florida as an example, the authors focused on local-scale patterns within this region in order to examine the geographic variability of seasonal rainfall and river discharge as related to ENSO. Forty-eight years (1950–98) of precipitation and river discharge data in Florida were classified, using sea surface temperature anomaly data from the equatorial Pacific Ocean, as occurring during an El Nino (warm event), La Nina (cold event), or neither (neutral). Seasonal precipitation and streamflow both exhibited strong responses to ENSO as shown by their relationships to Nino-3.4 sea surface temperature anomalies. Florida does not respond as a uniform region to ENSO, particularly with respect to precipitation in the Panhandle and the southernmost areas of Florida. In particular, seasonal river discha...

Journal ArticleDOI
01 Jan 2001-Proteins
TL;DR: With the rapid increase in CASP participation and in the number of submitted predictions, special emphasis is placed on methods allowing reliable pre‐classification of submissions and on techniques useful in automated evaluation of predictions.
Abstract: The Livermore Prediction Center conducted the target collection and prediction submission processes for Critical Assessment of Protein Structure Prediction (CASP4) and Critical Assessment of Fully Automated Structure Prediction Methods (CAFASP2). We have also evaluated all the submitted predictions using criteria and methods developed during the course of three previous CASP experiments and preparation for CASP4. We present an overview of the implemented system. Particular attention is paid to newly developed evaluation techniques and data presentation schemes. With the rapid increase in CASP participation and in the number of submitted predictions, special emphasis is placed on methods allowing reliable pre-classification of submissions and on techniques useful in automated evaluation of predictions. We also present an overview of our website, including target structures, predictions, and their evaluations ( http://predictioncenter.llnl.gov).

Journal ArticleDOI
TL;DR: Analysis of the structure of the 5'-flanking regions of both the CYP19A1 and A2 genes indicate that substantially different regulators, including a variety of environmental xenobiotics, control the expression the two CYP 19 genes.

Journal ArticleDOI
01 Jan 2001-Immunity
TL;DR: Surprisingly, SPE-C makes extensive contacts with the MBP peptide, such that peptide accounts for one third of the surface area of the MHC molecule buried in the complex, similar to TCR-peptide/MHC complexes, which may optimize T cell responses by mimicking the peptide dependence of conventional antigen presentation and recognition.

Journal ArticleDOI
TL;DR: The production of autoinducer AI-2, a signaling molecule employed by E. coli for intercellular communication, was studied and its responses to several perturbations were indicative of a shift in metabolic activity or state of the cells induced by the individual stress.
Abstract: Numerous gram-negative bacteria employ a cell-to-cell signaling mechanism, termed quorum sensing, for controlling gene expression in response to population density. Recently, this phenomenon has been discovered in Escherichia coli, and while pathogenic E. coli utilize quorum sensing to regulate pathogenesis (i.e., expression of virulence genes), the role of quorum sensing in nonpathogenic E. coli is less clear, and in particular, there is no information regarding the role of quorum sensing during the overexpression of recombinant proteins. The production of autoinducer AI-2, a signaling molecule employed by E. coli for intercellular communication, was studied in E. coli W3110 chemostat cultures using a Vibrio harveyi AI-2 reporter assay (M. G. Surrette and B. L. Bassler, Proc. Natl. Acad. Sci. USA 95:7046–7050, 1998). Chemostat cultures enabled a study of AI-2 regulation through steady-state and transient responses to a variety of environmental stimuli. Results demonstrated that AI-2 levels increased with the steady-state culture growth rate. In addition, AI-2 increased following pulsed addition of glucose, Fe(III), NaCl, and dithiothreitol and decreased following aerobiosis, amino acid starvation, and isopropyl-β-d-thiogalactopyranoside-induced expression of human interleukin-2 (hIL-2). In general, the AI-2 responses to several perturbations were indicative of a shift in metabolic activity or state of the cells induced by the individual stress. Because of our interest in the expression of heterologous proteins in E. coli, the transcription of four quorum-regulated genes and 20 stress genes was mapped during the transient response to induced expression of hIL-2. Significant regulatory overlap was revealed among several stress and starvation genes and known quorum-sensing genes.

Journal ArticleDOI
TL;DR: The effects of extended photoperiods, mimicking the longest day of the year, were studied in 1-and 2-year seabreams as discussed by the authors, which used natural and fluorescent light, reduced the incidence of maturity in both year classes and females did not spawn although some gonadal development was observed.

Journal ArticleDOI
TL;DR: Physicochemical characterization of calcium binding, oligomerization, and DNA binding of human calsenilin/DREAM/KChIP3, a member of the recoverin branch of the EF-hand superfamily, interacts with presenilins, serves as a calcium-regulated transcriptional repressor, and interacts with A-type potassium channels.

Journal ArticleDOI
TL;DR: The abundance of cyanophages infecting marineSynechococcus spp.
Abstract: The abundance of cyanophages infecting marine Synechococcus spp. increased with increasing salinity in three Georgia coastal rivers. About 80% of the cyanophage isolates were cyanomyoviruses. High cross-infectivity was found among the cyanophages infecting phycoerythrin-containing Synechococcus strains. Cyanophages in the river estuaries were diverse in terms of their morphotypes and genotypes.