scispace - formally typeset
Search or ask a question
Institution

Xidian University

EducationXi'an, China
About: Xidian University is a education organization based out in Xi'an, China. It is known for research contribution in the topics: Antenna (radio) & Computer science. The organization has 32099 authors who have published 38961 publications receiving 431820 citations. The organization is also known as: University of Electronic Science and Technology at Xi'an & Xīān Diànzǐ Kējì Dàxué.


Papers
More filters
Proceedings ArticleDOI
06 Nov 2011
TL;DR: A novel dictionary learning (DL) method based on the Fisher discrimination criterion, whose dictionary atoms have correspondence to the class labels is learned so that the reconstruction error after sparse coding can be used for pattern classification.
Abstract: Sparse representation based classification has led to interesting image recognition results, while the dictionary used for sparse coding plays a key role in it. This paper presents a novel dictionary learning (DL) method to improve the pattern classification performance. Based on the Fisher discrimination criterion, a structured dictionary, whose dictionary atoms have correspondence to the class labels, is learned so that the reconstruction error after sparse coding can be used for pattern classification. Meanwhile, the Fisher discrimination criterion is imposed on the coding coefficients so that they have small within-class scatter but big between-class scatter. A new classification scheme associated with the proposed Fisher discrimination DL (FDDL) method is then presented by using both the discriminative information in the reconstruction error and sparse coding coefficients. The proposed FDDL is extensively evaluated on benchmark image databases in comparison with existing sparse representation and DL based classification methods.

1,002 citations

Journal ArticleDOI
TL;DR: This paper investigates the properties of trust, proposes objectives of IoT trust management, and provides a survey on the current literature advances towards trustworthy IoT to propose a research model for holistic trust management in IoT.

1,001 citations

Proceedings Article
12 Feb 2016
TL;DR: A novel model for learning graph representations, which generates a low-dimensional vector representation for each vertex by capturing the graph structural information directly, and which outperforms other stat-of-the-art models in such tasks.
Abstract: In this paper, we propose a novel model for learning graph representations, which generates a low-dimensional vector representation for each vertex by capturing the graph structural information. Different from other previous research efforts, we adopt a random surfing model to capture graph structural information directly, instead of using the sampling-based method for generating linear sequences proposed by Perozzi et al. (2014). The advantages of our approach will be illustrated from both theorical and empirical perspectives. We also give a new perspective for the matrix factorization method proposed by Levy and Goldberg (2014), in which the pointwise mutual information (PMI) matrix is considered as an analytical solution to the objective function of the skip-gram model with negative sampling proposed by Mikolov et al. (2013). Unlike their approach which involves the use of the SVD for finding the low-dimensitonal projections from the PMI matrix, however, the stacked denoising autoencoder is introduced in our model to extract complex features and model non-linearities. To demonstrate the effectiveness of our model, we conduct experiments on clustering and visualization tasks, employing the learned vertex representations as features. Empirical results on datasets of varying sizes show that our model outperforms other stat-of-the-art models in such tasks.

919 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of axial strain on the electronic band structure of phosphorene was studied using first-principles methods including density functional theory (DFT) and hybrid functionals.
Abstract: Recently fabricated two-dimensional phosphorene crystal structures have demonstrated great potential in applications of electronics. In this paper, strain effect on the electronic band structure of phosphorene was studied using first-principles methods including density functional theory (DFT) and hybrid functionals. It was found that phosphorene can withstand a tensile stress and strain up to 10 N/m and 30%, respectively. The band gap of phosphorene experiences a direct-indirect-direct transition when axial strain is applied. A moderate −2% compression in the zigzag direction can trigger this gap transition. With sufficient expansion (+11.3%) or compression (−10.2% strains), the gap can be tuned from indirect to direct again. Five strain zones with distinct electronic band structure were identified, and the critical strains for the zone boundaries were determined. Although the DFT method is known to underestimate band gap of semiconductors, it was proven to correctly predict the strain effect on the electronic properties with validation from a hybrid functional method in this work. The origin of the gap transition was revealed, and a general mechanism was developed to explain energy shifts with strain according to the bond nature of near-band-edge electronic orbitals. Effective masses of carriers in the armchair direction are an order of magnitude smaller than that of the zigzag axis, indicating that the armchair direction is favored for carrier transport. In addition, the effective masses can be dramatically tuned by strain, in which its sharp jump/drop occurs at the zone boundaries of the direct-indirect gap transition.

822 citations

Journal ArticleDOI
TL;DR: This paper investigates partial computation offloading by jointly optimizing the computational speed of smart mobile device (SMD), transmit power of SMD, and offloading ratio with two system design objectives: energy consumption of ECM minimization and latency of application execution minimization.
Abstract: The incorporation of dynamic voltage scaling technology into computation offloading offers more flexibilities for mobile edge computing. In this paper, we investigate partial computation offloading by jointly optimizing the computational speed of smart mobile device (SMD), transmit power of SMD, and offloading ratio with two system design objectives: energy consumption of SMD minimization (ECM) and latency of application execution minimization (LM). Considering the case that the SMD is served by a single cloud server, we formulate both the ECM problem and the LM problem as nonconvex problems. To tackle the ECM problem, we recast it as a convex one with the variable substitution technique and obtain its optimal solution. To address the nonconvex and nonsmooth LM problem, we propose a locally optimal algorithm with the univariate search technique. Furthermore, we extend the scenario to a multiple cloud servers system, where the SMD could offload its computation to a set of cloud servers. In this scenario, we obtain the optimal computation distribution among cloud servers in closed form for the ECM and LM problems. Finally, extensive simulations demonstrate that our proposed algorithms can significantly reduce the energy consumption and shorten the latency with respect to the existing offloading schemes.

819 citations


Authors

Showing all 32362 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Jie Zhang1784857221720
Bin Wang126222674364
Huijun Gao12168544399
Hong Wang110163351811
Jian Zhang107306469715
Guozhong Cao10469441625
Lajos Hanzo101204054380
Witold Pedrycz101176658203
Lei Liu98204151163
Qi Tian96103041010
Wei Liu96153842459
MengChu Zhou96112436969
Chunying Chen9450830110
Daniel W. C. Ho8536021429
Network Information
Related Institutions (5)
Beihang University
73.5K papers, 975.6K citations

92% related

Southeast University
79.4K papers, 1.1M citations

91% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

91% related

City University of Hong Kong
60.1K papers, 1.7M citations

90% related

Nanyang Technological University
112.8K papers, 3.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023117
2022529
20213,751
20203,817
20194,017
20183,382