scispace - formally typeset
Search or ask a question
Institution

Xidian University

EducationXi'an, China
About: Xidian University is a education organization based out in Xi'an, China. It is known for research contribution in the topics: Antenna (radio) & Computer science. The organization has 32099 authors who have published 38961 publications receiving 431820 citations. The organization is also known as: University of Electronic Science and Technology at Xi'an & Xīān Diànzǐ Kējì Dàxué.


Papers
More filters
Proceedings ArticleDOI
01 Jul 2020
TL;DR: FLAT as discussed by the authors converts the lattice structure into a flat structure consisting of spans, each span corresponds to a character or latent word and its position in the original lattice, which has an excellent parallel ability.
Abstract: Recently, the character-word lattice structure has been proved to be effective for Chinese named entity recognition (NER) by incorporating the word information. However, since the lattice structure is complex and dynamic, the lattice-based models are hard to fully utilize the parallel computation of GPUs and usually have a low inference speed. In this paper, we propose FLAT: Flat-LAttice Transformer for Chinese NER, which converts the lattice structure into a flat structure consisting of spans. Each span corresponds to a character or latent word and its position in the original lattice. With the power of Transformer and well-designed position encoding, FLAT can fully leverage the lattice information and has an excellent parallel ability. Experiments on four datasets show FLAT outperforms other lexicon-based models in performance and efficiency.

253 citations

Journal ArticleDOI
TL;DR: A novel framework for IQA to mimic the human visual system (HVS) by incorporating the merits from multiscale geometric analysis (MGA), contrast sensitivity function (CSF), and the Weber's law of just noticeable difference (JND) is developed.
Abstract: Reduced-reference (RR) image quality assessment (IQA) has been recognized as an effective and efficient way to predict the visual quality of distorted images. The current standard is the wavelet-domain natural image statistics model (WNISM), which applies the Kullback-Leibler divergence between the marginal distributions of wavelet coefficients of the reference and distorted images to measure the image distortion. However, WNISM fails to consider the statistical correlations of wavelet coefficients in different subbands and the visual response characteristics of the mammalian cortical simple cells. In addition, wavelet transforms are optimal greedy approximations to extract singularity structures, so they fail to explicitly extract the image geometric information, e.g., lines and curves. Finally, wavelet coefficients are dense for smooth image edge contours. In this paper, to target the aforementioned problems in IQA, we develop a novel framework for IQA to mimic the human visual system (HVS) by incorporating the merits from multiscale geometric analysis (MGA), contrast sensitivity function (CSF), and the Weber's law of just noticeable difference (JND). In the proposed framework, MGA is utilized to decompose images and then extract features to mimic the multichannel structure of HVS. Additionally, MGA offers a series of transforms including wavelet, curvelet, bandelet, contourlet, wavelet-based contourlet transform (WBCT), and hybrid wavelets and directional filter banks (HWD), and different transforms capture different types of image geometric information. CSF is applied to weight coefficients obtained by MGA to simulate the appearance of images to observers by taking into account many of the nonlinearities inherent in HVS. JND is finally introduced to produce a noticeable variation in sensory experience. Thorough empirical studies are carried out upon the LIVE database against subjective mean opinion score (MOS) and demonstrate that 1) the proposed framework has good consistency with subjective perception values and the objective assessment results can well reflect the visual quality of images, 2) different transforms in MGA under the new framework perform better than the standard WNISM and some of them even perform better than the standard full-reference IQA model, i.e., the mean structural similarity index, and 3) HWD performs best among all transforms in MGA under the framework.

251 citations

Journal ArticleDOI
TL;DR: In this article, the Banach contraction principle and Caristi's fixed point theorem are generalized to the case of multi-valued mappings, and the results are extensions of the well-known Nadler's fixed-point theorem [S.B. Nadler Jr., Multi-valued contraction mappings.

250 citations

Journal ArticleDOI
TL;DR: It is shown that an AI agent using deep learning, and involving convolutional neural networks for diagnostics, risk stratification and treatment suggestions, accurately diagnoses and provides treatment decisions for congenital cataracts in an in silico test, a website-based study, in a ‘finding a needle in a haystack’ test and in a multihospital clinical trial.
Abstract: Using artificial intelligence (AI) to prevent and treat diseases is an ultimate goal in computational medicine. Although AI has been developed for screening and assisted decision-making in disease prevention and management, it has not yet been validated for systematic application in the clinic. In the context of rare diseases, the main strategy has been to build specialized care centres; however, these centres are scattered and their coverage is insufficient, which leaves a large proportion of rare-disease patients with inadequate care. Here, we show that an AI agent using deep learning, and involving convolutional neural networks for diagnostics, risk stratification and treatment suggestions, accurately diagnoses and provides treatment decisions for congenital cataracts in an in silico test, in a website-based study, in a ‘finding a needle in a haystack’ test and in a multihospital clinical trial. We also show that the AI agent and individual ophthalmologists perform equally well. Moreover, we have integrated the AI agent with a cloud-based platform for multihospital collaboration, designed to improve disease management for the benefit of patients with rare diseases. An artificial intelligence agent integrated with a cloud-based platform for multihospital collaboration performs equally as well as ophthalmologists in the diagnosis of congenital cataracts in a series of online tests and a multihospital clinical trial.

248 citations

Journal ArticleDOI
TL;DR: In this paper, a scheme for multi-target identification and localization using bistatic MIMO radar systems is proposed, which can be distinguished by Capon method, as well as the targets angles with respect to transmitter and receiver using the received signals.
Abstract: A scheme for multitarget identification and localization using bistatic MIMO radar systems is proposed. Multitarget can be distinguished by Capon method, as well as the targets angles with respect to transmitter and receiver can be synthesized using the received signals. Thus, the locations of the multiple targets are obtained and spatial synchronization problem in traditional bistatic radars is avoided. The maximum number of targets that can be uniquely identified by proposed method is also analyzed. It is indicated that the product of the numbers of receive and transmit elements minus-one targets can be identified by exploiting the fluctuating of the radar cross section (RCS) of the targets. Cramer-Rao bounds (CRB) are derived to obtain more insights of this scheme. Simulation results demonstrate the performances of the proposed method using Swerling II target model in various scenarios.

248 citations


Authors

Showing all 32362 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Jie Zhang1784857221720
Bin Wang126222674364
Huijun Gao12168544399
Hong Wang110163351811
Jian Zhang107306469715
Guozhong Cao10469441625
Lajos Hanzo101204054380
Witold Pedrycz101176658203
Lei Liu98204151163
Qi Tian96103041010
Wei Liu96153842459
MengChu Zhou96112436969
Chunying Chen9450830110
Daniel W. C. Ho8536021429
Network Information
Related Institutions (5)
Beihang University
73.5K papers, 975.6K citations

92% related

Southeast University
79.4K papers, 1.1M citations

91% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

91% related

City University of Hong Kong
60.1K papers, 1.7M citations

90% related

Nanyang Technological University
112.8K papers, 3.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023117
2022529
20213,751
20203,817
20194,017
20183,382