scispace - formally typeset
Search or ask a question
Institution

Xidian University

EducationXi'an, China
About: Xidian University is a education organization based out in Xi'an, China. It is known for research contribution in the topics: Antenna (radio) & Computer science. The organization has 32099 authors who have published 38961 publications receiving 431820 citations. The organization is also known as: University of Electronic Science and Technology at Xi'an & Xīān Diànzǐ Kējì Dàxué.


Papers
More filters
Journal ArticleDOI
Ying Hu1, Xiaohua Zhou1, Qiang Han1, Quanxi Cao1, Yunxia Huang1 
TL;DR: In this article, the sensing properties of these sensors to gases were studied on the condition of different ratios of ZnO to CuO, including the resistance-temperature properties of various samples and their sensitivities and response behavior at different temperatures and in different gases.
Abstract: CuO–ZnO heterojunction gas sensor is a new type gas sensor and has many advantages, such as low cost, simple processing, and convenient testing, etc. In this work, the sensing properties of these sensors to gases were studied on the condition of different ratios of ZnO to CuO, including the resistance-temperature properties of various samples and their sensitivities and response behavior at different temperatures and in different gases. The obtained results are analyzed and discussed in this paper.

107 citations

Journal ArticleDOI
TL;DR: It is shown that not only is the entire closed-loop system stable, but also both the identification/tracking error and the parameter estimation error converge to zero uniformly exponentially under a cooperative persistent excitation (PE) condition of a regressor matrix in each system.
Abstract: In this paper, we first address the uniformly exponential stability (UES) problem of a group of distributed cooperative adaptive systems in a general framework. Inspired by consensus theory, distributed cooperative adaptive laws are proposed to estimate the unknown parameters of these systems. It is shown that not only is the entire closed-loop system stable, but also both the identification/tracking error and the parameter estimation error converge to zero uniformly exponentially under a cooperative persistent excitation (PE) condition of a regressor matrix in each system which is weaker than the traditionally defined PE condition. The effects of network topology on UES of the closed-loop system are also explored. If the topology is time-invariant, it needs to be undirected and connected. However, when the topology is time-varying, it is just required that the integration of the topology over an interval with fixed length is undirected and connected. The established results are then employed to identify and control several classes of linearly parameterized systems. Simulation examples are also provided to demonstrate the effectiveness and applications of the proposed distributed cooperative adaptive laws.

107 citations

Journal ArticleDOI
TL;DR: A novel DeepOC neural network, termed as DeepOC, which can simultaneously learn compact feature representations and train a one-class classifier, and achieves the state-of-the-art anomaly detection results compared with a dozen existing methods.
Abstract: How to build a generic deep one-class (DeepOC) model to solve one-class classification problems for anomaly detection, such as anomalous event detection in complex scenes? The characteristics of existing one-class labels lead to a dilemma: it is hard to directly use a multiple classifier based on deep neural networks to solve one-class classification problems. Therefore, in this article, we propose a novel DeepOC neural network, termed as DeepOC, which can simultaneously learn compact feature representations and train a DeepOC classifier. Only with the given normal samples, we use the stacked convolutional encoder to generate their low-dimensional high-level features and train a one-class classifier to make these features as compact as possible. Meanwhile, for the sake of the correct mapping relation and the feature representations’ diversity, we utilize a decoder in order to reconstruct raw samples from these low-dimensional feature representations. This structure is gradually established using an adversarial mechanism during the training stage. This mechanism is the key to our model. It organically combines two seemingly contradictory components and allows them to take advantage of each other, thus making the model robust and effective. Unlike methods that use handcrafted features or those that are separated into two stages (extracting features and training classifiers), DeepOC is a one-stage model using reliable features that are automatically extracted by neural networks. Experiments on various benchmark data sets show that DeepOC is feasible and achieves the state-of-the-art anomaly detection results compared with a dozen existing methods.

107 citations

Journal ArticleDOI
TL;DR: Thorough experiments have been conducted on five standard databases, which show that a significant improvement can be achieved by adopting multi-level deep representations from a very deep DNN model for learning an effective BIQA model, and consequently BLINDER considerably outperforms previous state-of-the-art BIZA methods for authentically distorted images.

107 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: An advanced image denoising network, namely FOCNet, is developed by solving a fractional optimal control (FOC) problem and the network structure is designed based on the discretization of an fractional-order differential equation, which enjoys long-term memory in both forward and backward passes.
Abstract: Deep convolutional neural networks (DCNN) have been successfully used in many low-level vision problems such as image denoising. Recent studies on the mathematical foundation of DCNN has revealed that the forward propagation of DCNN corresponds to a dynamic system, which can be described by an ordinary differential equation (ODE) and solved by the optimal control method. However, most of these methods employ integer-order differential equation, which has local connectivity in time space and cannot describe the long-term memory of the system. Inspired by the fact that the fractional-order differential equation has long-term memory, in this paper we develop an advanced image denoising network, namely FOCNet, by solving a fractional optimal control (FOC) problem. Specifically, the network structure is designed based on the discretization of a fractional-order differential equation, which enjoys long-term memory in both forward and backward passes. Besides, multi-scale feature interactions are introduced into the FOCNet to strengthen the control of the dynamic system. Extensive experiments demonstrate the leading performance of the proposed FOCNet on image denoising. Code will be made available.

107 citations


Authors

Showing all 32362 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Jie Zhang1784857221720
Bin Wang126222674364
Huijun Gao12168544399
Hong Wang110163351811
Jian Zhang107306469715
Guozhong Cao10469441625
Lajos Hanzo101204054380
Witold Pedrycz101176658203
Lei Liu98204151163
Qi Tian96103041010
Wei Liu96153842459
MengChu Zhou96112436969
Chunying Chen9450830110
Daniel W. C. Ho8536021429
Network Information
Related Institutions (5)
Beihang University
73.5K papers, 975.6K citations

92% related

Southeast University
79.4K papers, 1.1M citations

91% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

91% related

City University of Hong Kong
60.1K papers, 1.7M citations

90% related

Nanyang Technological University
112.8K papers, 3.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023117
2022529
20213,751
20203,817
20194,017
20183,382